
He Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Efficiency and Anomalous Photoacoustic Behavior in Vertical CNTs Array. Energy and Environmental Materials, 2023, 6, .	12.8	2
2	Ultrathin Anion Conductors Based Memristor. Advanced Electronic Materials, 2022, 8, 2100845.	5.1	10
3	Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chemical Engineering Journal, 2022, 431, 133908.	12.7	15
4	Industrial-scale production of high-quality graphene sheets by millstone grinders. Journal Physics D: Applied Physics, 2022, 55, 164002.	2.8	2
5	Intelligent and Multifunctional Graphene Nanomesh Electronic Skin with High Comfort. Small, 2022, 18, e2104810.	10.0	42
6	Electrooculography and Tactile Perception Collaborative Interface for 3D Human–Machine Interaction. ACS Nano, 2022, 16, 6687-6699.	14.6	44
7	Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Science Advances, 2022, 8, eabn2156.	10.3	62
8	Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. Applied Sciences (Switzerland), 2022, 12, 4526.	2.5	12
9	Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. Applied Sciences (Switzerland), 2022, 12, 4370.	2.5	6
10	The Trend of 2D Transistors toward Integrated Circuits: Scaling Down and New Mechanisms. Advanced Materials, 2022, 34, e2201916.	21.0	37
11	Wafer-Scale Photolithography-Pixeled Pb-Free Perovskite X-ray Detectors. ACS Nano, 2022, 16, 10199-10208.	14.6	25
12	Cs ₂ AgBiBr ₆ -Tellurium heterojunction-based high-performance X-ray detectors. , 2022, , .		1
13	Electromyogram-strain synergetic intelligent artificial throat. Chemical Engineering Journal, 2022, 449, 137741.	12.7	11
14	The α-In ₂ Se ₃ THz Photodetector. IEEE Transactions on Electron Devices, 2022, 69, 4371-4376.	3.0	1
15	Directly integrated mixedâ€dimensional van der Waals graphene/perovskite heterojunction for fast photodetection. InformaÄnÃ-Materiály, 2022, 4, .	17.3	18
16	High-performance single crystal CH3NH3PbI3 perovskite x-ray detector. Applied Physics Letters, 2021, 118, .	3.3	28
17	Filling the gap: thermal properties and device applications of graphene. Science China Information Sciences, 2021, 64, 1.	4.3	10
18	Efficient and bright warm-white electroluminescence from lead-free metal halides. Nature Communications, 2021, 12, 1421.	12.8	99

1

#	Article	IF	CITATIONS
19	Flexible and Transparent Ultraviolet Photodetector Enabled by Metal Doping ZnO Nanorods Based on Mica Substrate. , 2021, , .		0
20	Gate-Tunable Negative Differential Resistance Behaviors in a hBN-Encapsulated BP-MoS ₂ Heterojunction. ACS Applied Materials & Interfaces, 2021, 13, 26161-26169.	8.0	21
21	The Origin of CBRAM With High Linearity, On/Off Ratio, and State Number for Neuromorphic Computing. IEEE Transactions on Electron Devices, 2021, 68, 2568-2571.	3.0	12
22	Roll-to-roll graphene films for non-disposable electrocardiogram electrodes. Journal Physics D: Applied Physics, 2021, 54, 364003.	2.8	8
23	Black phosphorus junctions and their electrical and optoelectronic applications. Journal of Semiconductors, 2021, 42, 081001.	3.7	22
24	Transistor Subthreshold Swing Lowered by 2-D Heterostructures. IEEE Transactions on Electron Devices, 2021, 68, 411-414.	3.0	1
25	A 10Ânm Short Channel MoS ₂ Transistor without the Resolution Requirement of Photolithography. Advanced Electronic Materials, 2021, 7, 2100543.	5.1	9
26	Graphene-Based Multifunctional Textile for Sensing and Actuating. ACS Nano, 2021, 15, 17738-17747.	14.6	57
27	Modeling of Gate Tunable Synaptic Device for Neuromorphic Applications. Frontiers in Physics, 2021, 9, .	2.1	2
28	Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon, 2020, 156, 253-260.	10.3	67
29	Grapheneâ€Based Devices for Thermal Energy Conversion and Utilization. Advanced Functional Materials, 2020, 30, 1903888.	14.9	30
30	High-Quality Single Crystal Perovskite for Highly Sensitive X-Ray Detector. IEEE Electron Device Letters, 2020, 41, 256-259.	3.9	36
31	Fabricating Molybdenum Disulfide Memristors. ACS Applied Electronic Materials, 2020, 2, 346-370.	4.3	27
32	Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS Applied Materials & Interfaces, 2020, 12, 49945-49956.	8.0	43
33	Anomalous thermoacoustic effect in topological insulator for sound applications. Applied Physics Letters, 2020, 117, 123502.	3.3	2
34	High Performance and Wireless Graphene Earphone towards Practical Applications. , 2020, , .		1
35	Encapsulated X-Ray Detector Enabled by All-Inorganic Lead-Free Perovskite Film With High Sensitivity and Low Detection Limit. IEEE Transactions on Electron Devices, 2020, 67, 3191-3198.	3.0	40

Graphene muscle with artificial intelligence. , 2020, , .

#	Article	IF	CITATIONS
37	Graphene-Based Thermoacoustic Sound Source. ACS Nano, 2020, 14, 3779-3804.	14.6	33
38	Novel photoelectroactive memories and neuromorphic devices based on nanomaterials. , 2020, , 201-222.		0
39	A Spectrum-Tunable and Flexible Light-Emitting Device with Ultra-Wide Wavelength Range. , 2020, , .		0
40	Lower Power, Better Uniformity, and Stability CBRAM Enabled by Graphene Nanohole Interface Engineering. IEEE Transactions on Electron Devices, 2020, 67, 984-988.	3.0	9
41	Thermal Energy Conversion: Grapheneâ€Based Devices for Thermal Energy Conversion and Utilization (Adv. Funct. Mater. 8/2020). Advanced Functional Materials, 2020, 30, 2070052.	14.9	0
42	A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nature Nanotechnology, 2020, 15, 321-330.	31.5	83
43	Ultrafast Photodetector by Integrating Perovskite Directly on Silicon Wafer. ACS Nano, 2020, 14, 2860-2868.	14.6	86
44	Highly Sensitive, Wide-Range, and Flexible Pressure Sensor Based on Honeycomb-Like Graphene Network. IEEE Transactions on Electron Devices, 2020, 67, 2153-2156.	3.0	20
45	Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics, 2019, 13, 760-764.	31.4	483
46	High sensitive surface-acoustic-wave optical sensor based on two-dimensional perovskite. , 2019, , .		2
47	A Wearable Skinlike Ultra-Sensitive Artificial Graphene Throat. ACS Nano, 2019, 13, 8639-8647.	14.6	80
48	Light-Enhanced Ion Migration in Two-Dimensional Perovskite Single Crystals Revealed in Carbon Nanotubes/Two-Dimensional Perovskite Heterostructure and Its Photomemory Application. ACS Central Science, 2019, 5, 1857-1865.	11.3	45
49	Graphene-based wearable sensors. Nanoscale, 2019, 11, 18923-18945.	5.6	98
50	Flexible Two-Dimensional Ti ₃ C ₂ MXene Films as Thermoacoustic Devices. ACS Nano, 2019, 13, 12613-12620.	14.6	53
51	Ultra-High Sensitive NO ₂ Gas Sensor Based on Tunable Polarity Transport in CVD-WS ₂ /IGZO p-N Heterojunction. ACS Applied Materials & Interfaces, 2019, 11, 40850-40859.	8.0	105
52	Two-Mode MoS ₂ Filament Transistor with Extremely Low Subthreshold Swing and Record High On/Off Ratio. ACS Nano, 2019, 13, 2205-2212.	14.6	22
53	X-Ray Detector Based on All-Inorganic Lead-Free Cs ₂ AgBiBr ₆ Perovskite Single Crystal. IEEE Transactions on Electron Devices, 2019, 66, 2224-2229.	3.0	57
54	Negative Capacitance Oxide Thin-Film Transistor With Sub-60 mV/Decade Subthreshold Swing. IEEE Electron Device Letters, 2019, 40, 826-829.	3.9	26

1

#	Article	IF	CITATIONS
55	Novel Perovskite-Based Devices. , 2019, , .		0
56	An efficient flexible graphene-based light-emitting device. Nanoscale Advances, 2019, 1, 4745-4754.	4.6	22
57	Au Nanoparticles-Decorated Surface Plasmon Enhanced ZnO Nanorods Ultraviolet Photodetector on Flexible Transparent Mica Substrate. IEEE Journal of the Electron Devices Society, 2019, 7, 196-202.	2.1	18
58	Negative Capacitance Black Phosphorus Transistors With Low SS. IEEE Transactions on Electron Devices, 2019, 66, 1579-1583.	3.0	15
59	Proton Conductor Gated Synaptic Transistor Based on Transparent IGZO for Realizing Electrical and UV Light Stimulus. IEEE Journal of the Electron Devices Society, 2019, 7, 38-45.	2.1	24
60	Graphene devices based on laser scribing technology. Japanese Journal of Applied Physics, 2018, 57, 04FA01.	1.5	19
61	Total-Ionizing-Dose Effects on a Graphene X-Ray Detector Laser-Scribed From Graphene Oxide. IEEE Transactions on Nuclear Science, 2018, 65, 473-477.	2.0	2
62	Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano, 2018, 12, 2346-2354.	14.6	579
63	A Grapheneâ€Based Filament Transistor with Subâ€10 mVdec ^{â^'1} Subthreshold Swing. Advanced Electronic Materials, 2018, 4, 1700608.	5.1	21
64	A novel cell-scale bio-nanogenerator based on electron–ion interaction for fast light power conversion. Nanoscale, 2018, 10, 526-532.	5.6	10
65	Interface Engineering with MoS ₂ –Pd Nanoparticles Hybrid Structure for a Low Voltage Resistive Switching Memory. Small, 2018, 14, 1702525.	10.0	52
66	High Performance 2D Perovskite/Graphene Optical Synapses as Artificial Eyes. , 2018, , .		21
67	First Principles Study of Memory Selectors using Heterojunctions of 2D Layered Materials. , 2018, , .		2
68	Ultrasensitive Heterojunctions of Graphene and 2D Perovskites Reveal Spontaneous lodide Loss. Joule, 2018, 2, 2133-2144.	24.0	39
69	High-Quality Reconfigurable Black Phosphorus p-n Junctions. IEEE Transactions on Electron Devices, 2018, , 1-5.	3.0	3
70	Surface Amorphous Oxides Induced Electron Transfer into Complex Oxide Heterointerfaces. Advanced Materials Interfaces, 2018, 5, 1801216.	3.7	14
71	Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249-253.	27.8	1,555

72 Piezoelectric Micromachined Ultrasonic Transducers for Ultrasound Imaging., 2018,,.

#	Article	IF	CITATIONS
73	Millimeter-Scale Nonlocal Photo-Sensing Based on Single-Crystal Perovskite Photodetector. IScience, 2018, 7, 110-119.	4.1	14
74	Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors and Bioelectronics, 2018, 116, 123-129.	10.1	278
75	An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale, 2018, 10, 11524-11530.	5.6	77
76	MoS ₂ Synaptic Transistor With Tunable Weight Profile. IEEE Transactions on Electron Devices, 2018, 65, 3543-3547.	3.0	13
77	A Two-terminal Electric-double-layer Synaptic Device with Short-term Plasticity. , 2018, , .		0
78	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846.	14.6	257
79	Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites. Applied Physics Letters, 2018, 112, 133902.	3.3	23
80	A Review on Bacteriorhodopsin-Based Bioelectronic Devices. Sensors, 2018, 18, 1368.	3.8	47
81	Towards quantitative mapping of the charge distribution along a nanowire by in-line electron holography. Ultramicroscopy, 2018, 194, 126-132.	1.9	5
82	An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nature Communications, 2017, 8, 14579.	12.8	396
83	Efficient electrical control of thin-film black phosphorus bandgap. Nature Communications, 2017, 8, 14474.	12.8	249
84	High-performance sound source devices based on graphene woven fabrics. Applied Physics Letters, 2017, 110, .	3.3	12
85	Novel electron devices based on laser scribed graphene. , 2017, , .		1
86	A novel artificial synapse with dual modes using bilayer graphene as the bottom electrode. Nanoscale, 2017, 9, 9275-9283.	5.6	70
87	Novel Field Effect Transistor Fabrication Based on Non-Graphene 2D Materials. MRS Advances, 2017, 2, 3675-3684.	0.9	0
88	Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale, 2017, 9, 8266-8273.	5.6	100
89	Spatial-Temporal Imaging of Anisotropic Photocarrier Dynamics in Black Phosphorus. Nano Letters, 2017, 17, 3675-3680.	9.1	56
90	Atomically Thin Femtojoule Memristive Device. Advanced Materials, 2017, 29, 1703232.	21.0	147

#	Article	IF	CITATIONS
91	A Ferroelectric Thin Film Transistor Based on Annealing-Free HfZrO Film. IEEE Journal of the Electron Devices Society, 2017, 5, 378-383.	2.1	43
92	Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano, 2017, 11, 8790-8795.	14.6	572
93	Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing. ACS Nano, 2017, 11, 12247-12256.	14.6	286
94	Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device. ACS Nano, 2017, 11, 7156-7163.	14.6	106
95	Transport Properties and Device Prospects of Ultrathin Black Phosphorus on Hexagonal Boron Nitride. IEEE Transactions on Electron Devices, 2017, 64, 5163-5171.	3.0	16
96	A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene. Nanomaterials, 2016, 6, 112.	4.1	18
97	Novel electronic and photonic properties of low-symmetry two-dimensional materials. , 2016, , .		1
98	A novel thermal acoustic device based on porous graphene. AIP Advances, 2016, 6, .	1.3	9
99	Tunable and wearable high performance strain sensors based on laser patterned graphene flakes. , 2016, , .		1
100	Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Research, 2016, 9, 1543-1560.	10.4	186
101	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	31.4	1,535
102	Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Applied Materials & Interfaces, 2016, 8, 26458-26462.	8.0	387
103	Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates. Carbon, 2016, 109, 173-181.	10.3	38
104	Vertical ambipolar barrier transistor based on black phosphorous-tin selenide van der waals heterojunction. , 2016, , .		0
105	Novel memory devices based on nanostructured carbon materials. , 2016, , .		0
106	Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today, 2016, 11, 763-777.	11.9	113
107	A Reduced Graphene Oxide (rGO)â€Ferroelectrics Hybrid Nanocomposite as High Efficient Visibleâ€Lightâ€Driven Photocatalyst. ChemistrySelect, 2016, 1, 6020-6025.	1.5	7
108	A Dynamically Reconfigurable Ambipolar Black Phosphorus Memory Device. ACS Nano, 2016, 10, 10428-10435.	14.6	97

#	Article	IF	CITATIONS
109	Novel graphene-based resistive random access memory. , 2016, , .		0
110	Black Phosphorus Mid-Infrared Photodetectors with High Gain. Nano Letters, 2016, 16, 4648-4655.	9.1	616
111	Fabrication techniques and applications of flexible graphene-based electronic devices. Journal of Semiconductors, 2016, 37, 041001.	3.7	25
112	Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications. Advanced Materials, 2016, 28, 4991-4997.	21.0	281
113	A point acoustic device based on aluminum nanowires. Nanoscale, 2016, 8, 5516-5525.	5.6	15
114	A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. Journal of Materials Chemistry C, 2016, 4, 630-636.	5.5	87
115	In situ observation of electrical property of thin-layer black phosphorus based on dry transfer method. Applied Physics Express, 2016, 9, 045202.	2.4	3
116	Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence. Nano Energy, 2016, 20, 48-56.	16.0	43
117	Electrical thermal acoustic point source based on mems technology. , 2016, , .		0
118	A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m ^{â^'3} . Nanoscale, 2016, 8, 3539-3547	7. ^{5.6}	96
119	Memory Devices: In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7766-7766.	21.0	1
120	K0.5Na0.5NbO3-based self-powered pressure sensor. Tsinghua Science and Technology, 2015, 20, 264-269.	6.1	0
121	Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film. Chinese Physics Letters, 2015, 32, 114301.	3.3	2
122	Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. Scientific Reports, 2015, 5, 15554.	3.3	55
123	In Situ Tuning of Switching Window in a Gateâ€Controlled Bilayer Grapheneâ€Electrode Resistive Memory Device. Advanced Materials, 2015, 27, 7767-7774.	21.0	54
124	Regulating the respiration of microbe: A bio-inspired high performance microbial supercapacitor with graphene based electrodes and its kinetic features. Nano Energy, 2015, 15, 697-708.	16.0	38
125	Graphem stack: Growth, characterization and diverse devices. , 2015, , .		0
126	The use of graphene-based earphones in wireless communication. Tsinghua Science and Technology, 2015, 20, 270-276.	6.1	7

#	Article	IF	CITATIONS
127	A flexible, transparent and ultrathin single-layer graphene earphone. RSC Advances, 2015, 5, 17366-17371.	3.6	39
128	Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Materials, 2015, 7, e154-e154.	7.9	58
129	A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range. Scientific Reports, 2015, 5, 8603.	3.3	415
130	Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets. Scientific Reports, 2015, 5, 10582.	3.3	33
131	A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nature Communications, 2015, 6, 7767.	12.8	113
132	A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT. Sensors, 2015, 15, 2538-2547.	3.8	50
133	A discovery of an ultra-pure water detection method based on water mark. Modern Physics Letters B, 2015, 29, 1450271.	1.9	0
134	Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity. Nanoscale, 2015, 7, 8636-8644.	5.6	84
135	Controllable Thermal Rectification Realized in Binary Phase Change Composites. Scientific Reports, 2015, 5, 8884.	3.3	49
136	Graphene Dynamic Synapse with Modulatable Plasticity. Nano Letters, 2015, 15, 8013-8019.	9.1	226
137	A record flexible piezoelectric KNN ultrafine-grained nanopowder-based nanogenerator. AIP Advances, 2015, 5, 017102.	1.3	24
138	Biological information wireless monitoring system. , 2015, , .		0
139	Flexible, transparent single-layer graphene earphone. , 2014, , .		1
140	An ultra-sensitive resistive pressure sensor based on the V-shaped foam-like structure of laser-scribed graphene. , 2014, , .		1
141	A new type silicon based PIN photodetector linear array for rainfall prediction. , 2014, , .		0
142	Large-scale fabrication of graphene-based electronic and MEMS devices. , 2014, , .		1
143	Novel flexible nanogenerators. , 2014, , .		0
144	A 2.7-mW 1.36–1.86-GHz LC-VCO With a FOM of 202 dBc/Hz Enabled by a 26%-Size-Reduced Nano-Particle-Magnetic-Enhanced Inductor. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 1221-1228.	4.6	18

1

#	Article	IF	CITATIONS
145	A micro-scale microbial supercapacitor. , 2014, , .		1
146	Graphene Earphones: Entertainment for Both Humans and Animals. ACS Nano, 2014, 8, 5883-5890.	14.6	105
147	Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale, 2014, 6, 699-705.	5.6	366
148	Wafer-scale flexible graphene loudspeakers. , 2014, , .		3
149	Novel laser scribed graphene devices. , 2014, , .		0
150	A spring-connected nanogenerator based on ZnO nanoparticles and a multiwall carbon nanotube. RSC Advances, 2014, 4, 2115-2118.	3.6	15
151	Growth and Raman Spectra of Single-Crystal Trilayer Graphene with Different Stacking Orientations. ACS Nano, 2014, 8, 10766-10773.	14.6	56
152	Cost-Effective, Transfer-Free, Flexible Resistive Random Access Memory Using Laser-Scribed Reduced Graphene Oxide Patterning Technology. Nano Letters, 2014, 14, 3214-3219.	9.1	114
153	Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using P-N Junctions Formed by N-Doping Chemical Vapor Deposition Grown Graphene. Nano Letters, 2014, 14, 3702-3708.	9.1	201
154	Wafer-Scale Integration of Graphene-based Electronic, Optoelectronic and Electroacoustic Devices. Scientific Reports, 2014, 4, 3598.	3.3	113
155	Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions. Scientific Reports, 2014, 4, 5951.	3.3	134
156	Flexible and large-area sound-emitting device using reduced graphene oxide. , 2013, , .		4
157	Scalable and Direct Growth of Graphene Micro Ribbons on Dielectric Substrates. Scientific Reports, 2013, 3, 1348.	3.3	36
158	A small-signal generator based on a multi-layer graphene/molybdenum disulfide heterojunction. Applied Physics Letters, 2013, 103, .	3.3	6
159	A reduced graphene oxide sound-emitting device: a new use for Joule heating. RSC Advances, 2013, 3, 17672.	3.6	22
160	Flexible electrostatic nanogenerator using graphene oxide film. Nanoscale, 2013, 5, 8951.	5.6	80
161	A flexible piezoelectric micromachined ultrasound transducer. RSC Advances, 2013, 3, 24900.	3.6	30

162 Wafer-scale flexible graphene strain sensors. , 2013, , .

#	Article	IF	CITATIONS
163	Laser directed lithography of asymmetric graphene ribbons on a polydimethylsiloxane trench structure. Physical Chemistry Chemical Physics, 2013, 15, 6825.	2.8	7
164	A high order mode 6.4GHz ultra-high sensitivity nanoscale surface acoustic wave biosensor. , 2013, , .		0
165	A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale, 2013, 5, 890-894.	5.6	38
166	Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy and Environmental Science, 2013, 6, 108-115.	30.8	154
167	A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube. Nanoscale, 2013, 5, 6117.	5.6	130
168	Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode. Nano Letters, 2013, 13, 651-657.	9.1	121
169	An Ultra-High Element Density pMUT Array with Low Crosstalk for 3-D Medical Imaging. Sensors, 2013, 13, 9624-9634.	3.8	43
170	Wafer-Scale Flexible Surface Acoustic Wave Devices Based on an AlN/Si Structure. Chinese Physics Letters, 2013, 30, 077701.	3.3	8
171	A Novel Fabrication Method for Flexible SOI Substrate Based on Trench Refilling with Polydimethylsiloxane. Chinese Physics Letters, 2013, 30, 086201.	3.3	4
172	Flexible Graphite-on-Paper Piezoresistive Sensors. Sensors, 2012, 12, 6685-6694.	3.8	86
173	Bipolar and unipolar resistive switching effects in Al/DLC/W structure. Journal Physics D: Applied Physics, 2012, 45, 429501.	2.8	1
174	Resistive switching behavior in diamond-like carbon films grown by pulsed laser deposition for resistance switching random access memory application. Journal of Applied Physics, 2012, 111, 084501.	2.5	31
175	Bipolar and unipolar resistive switching effects in an Al/DLC/W structure. Journal Physics D: Applied Physics, 2012, 45, 365103.	2.8	7
176	Electrode/oxide interface engineering by inserting single-layer graphene: Application for HfO <inf>x</inf> -based resistive random access memory. , 2012, , .		12
177	Optimization of graphene/silicon heterojunction solar cells. , 2012, , .		4
178	Multilayer graphene growth by a metal-catalyzed crystallization of diamond-like carbon. , 2012, , .		0
179	Unipolar to ambipolar conversion in graphene field-effect transistors. Applied Physics Letters, 2012, 101, .	3.3	17
180	Static behavior of a graphene-based sound-emitting device. Nanoscale, 2012, 4, 3345.	5.6	28

#	Article	IF	CITATIONS
181	Comparison of Photovoltaic Performance Enhancement in BiFeO3 by Using Graphene and Carbon Nanotubes as Transparent Electrode. , 2012, , .		2
182	Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale, 2012, 4, 2130.	5.6	81
183	Micromachined piezoelectric devices for acoustic applications. , 2012, , .		1
184	Single-layer graphene sound-emitting devices: experiments and modeling. Nanoscale, 2012, 4, 2272.	5.6	92
185	A Novel Solid-State Thermal Rectifier Based On Reduced Graphene Oxide. Scientific Reports, 2012, 2, 523.	3.3	156
186	Multi-layer graphene treated by O2 plasma for transparent conductive electrode applications. Materials Letters, 2012, 73, 187-189.	2.6	13
187	Enhanced photovoltaic properties in graphene/polycrystalline BiFeO3/Pt heterojunction structure. Applied Physics Letters, 2011, 99, .	3.3	97
188	Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Applied Physics Letters, 2011, 99, 233505.	3.3	76
189	Transparent, flexible, ultrathin sound source devices using Indium Tin oxide films. Applied Physics Letters, 2011, 99, .	3.3	56
190	Graphene-on-Paper Sound Source Devices. ACS Nano, 2011, 5, 4878-4885.	14.6	197
191	Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film. Applied Physics Letters, 2011, 99, .	3.3	46
192	Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic, ultrathin, and transparent sound-emitting device. Applied Physics Letters, 2011, 99, 233503.	3.3	24
193	Introductory Chapter: Perovskite Materials and Advanced Applications. , 0, , .		0