## **Rimas J Orentas**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11142584/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bryostatin Activates CAR T-Cell Antigen-Non-Specific Killing (CTAK), and CAR-T NK-Like Killing for Pre-B<br>ALL, While Blocking Cytolysis of a Burkitt Lymphoma Cell Line. Frontiers in Immunology, 2022, 13,<br>825364. | 4.8  | 6         |
| 2  | Trispecific CD19-CD20-CD22–targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors<br>in preclinical models. Science Translational Medicine, 2021, 13, .                                                  | 12.4 | 77        |
| 3  | Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nature Medicine, 2021, 27, 1544-1552.                                      | 30.7 | 138       |
| 4  | Combining Immunocytokine and Ex Vivo Activated NK Cells as a Platform for Enhancing<br>Graft-Versus-Tumor Effects Against GD2+ Murine Neuroblastoma. Frontiers in Immunology, 2021, 12,<br>668307.                       | 4.8  | 4         |
| 5  | Self-driving armored CAR-T cells overcome a suppressive milieu and eradicate CD19+ Raji lymphoma in preclinical models. Molecular Therapy, 2021, 29, 2691-2706.                                                          | 8.2  | 18        |
| 6  | T-Cell Immunotherapy: From Synthetic Biology to Clinical Practice. , 2021, , 199-218.                                                                                                                                    |      | 0         |
| 7  | Promising Chimeric Antigen Receptors for Non-B-Cell Hematological Malignancies, Pediatric Solid<br>Tumors, and Carcinomas. , 2020, , 137-163.                                                                            |      | 2         |
| 8  | Persistent Polyfunctional Chimeric Antigen Receptor T Cells That Target Glypican 3 Eliminate<br>Orthotopic Hepatocellular Carcinomas in Mice. Gastroenterology, 2020, 158, 2250-2265.e20.                                | 1.3  | 97        |
| 9  | CAR-T Therapy for Lymphoma with Prophylactic Tocilizumab: Decreased Rates of Severe Cytokine<br>Release Syndrome without Excessive Neurologic Toxicity. Blood, 2020, 136, 30-31.                                         | 1.4  | 6         |
| 10 | CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against<br>Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research, 2019, 25, 2560-2574.                            | 7.0  | 369       |
| 11 | CD19 CAR T cell product and disease attributes predict leukemia remission durability. Journal of Clinical Investigation, 2019, 129, 2123-2132.                                                                           | 8.2  | 244       |
| 12 | A Unique Human Immunoglobulin Heavy Chain Variable Domain-Only CD33 CAR for the Treatment of<br>Acute Myeloid Leukemia. Frontiers in Oncology, 2018, 8, 539.                                                             | 2.8  | 32        |
| 13 | CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 2018, 24, 20-28.                                                                     | 30.7 | 1,030     |
| 14 | A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. , 2017, 5, 42.                                                                                       |      | 196       |
| 15 | Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting<br>Anaplastic Lymphoma Kinase. Molecular Therapy, 2017, 25, 2189-2201.                                                   | 8.2  | 264       |
| 16 | Paired Expression Analysis of Tumor Cell Surface Antigens. Frontiers in Oncology, 2017, 7, 173.                                                                                                                          | 2.8  | 16        |
| 17 | Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas. Cancer<br>Immunology Research, 2016, 4, 869-880.                                                                             | 3.4  | 258       |
| 18 | Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein_Blood_2015_126_629-639                                                                                           | 1.4  | 110       |

**RIMAS J ORENTAS** 

| #  | Article                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 2015, 21, 581-590.                                                                                                                                                        | 30.7 | 1,304     |
| 20 | Bioinformatic Description of Immunotherapy Targets for Pediatric T-Cell Leukemia and the Impact of Normal Gene Sets Used for Comparison. Frontiers in Oncology, 2014, 4, 134.                                                                                                                          | 2.8  | 13        |
| 21 | Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood, 2013, 122, 1105-1113.                                                                                                                                                                                  | 1.4  | 144       |
| 22 | Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.<br>Blood, 2013, 121, 1165-1174.                                                                                                                                                                          | 1.4  | 478       |
| 23 | Lessons learned from a highly-active CD22-specific chimeric antigen receptor. Oncolmmunology, 2013, 2, e23621.                                                                                                                                                                                         | 4.6  | 25        |
| 24 | Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers.<br>Frontiers in Oncology, 2012, 2, 194.                                                                                                                                                            | 2.8  | 81        |
| 25 | Transduction of Primary Lymphocytes with Epstein-Barr Virus (EBV) Latent Membrane Protein-Specific<br>T-Cell Receptor Induces Lysis of Virus-Infected Cells: A Novel Strategy for the Treatment of Hodgkin's<br>Disease and Nasopharyngeal Carcinoma. Journal of Clinical Immunology, 2006, 26, 22-32. | 3.8  | 27        |
| 26 | Retroviral Transduction of a T Cell Receptor Specific for an Epstein–Barr Virus-Encoded Peptide.<br>Clinical Immunology, 2001, 98, 220-228.                                                                                                                                                            | 3.2  | 87        |
| 27 | Feasibility of Cellular Adoptive Immunotherapy for Epstein-Barr Virus-Associated Lymphomas Using<br>Haploidentical Donors. Stem Cells and Development, 1998, 7, 257-261.                                                                                                                               | 1.0  | 31        |