
José Rivera-Utrilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11141218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic Degradation of Organic Wastes in Water. Catalysts, 2022, 12, 114.	3.5	1
2	Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO2 composite under UV radiation. Environmental Research, 2021, 200, 111750.	7.5	12
3	Removal of parabens from water by UV-driven advanced oxidation processes. Chemical Engineering Journal, 2020, 379, 122334.	12.7	59
4	Characteristics and Behavior of Different Catalysts Used for Water Decontamination in Photooxidation and Ozonation Processes. Catalysts, 2020, 10, 1485.	3.5	7
5	Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts, 2020, 10, 520.	3.5	71
6	Solar Degradation of Sulfamethazine Using rGO/Bi Composite Photocatalysts. Catalysts, 2020, 10, 573.	3.5	13
7	Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. Science of the Total Environment, 2019, 669, 767-776.	8.0	48
8	Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation. Arabian Journal of Chemistry, 2018, 11, 564-572.	4.9	13
9	Removal of Antibiotics from Water by Adsorption/Biosorption on Adsorbents from Different Raw Materials. , 2017, , 139-204.		3
10	Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation. Science of the Total Environment, 2016, 569-570, 518-526.	8.0	22
11	Photoactivity of organic xerogels and aerogels in the photodegradation of herbicides from waters. Applied Catalysis B: Environmental, 2016, 181, 94-102.	20.2	19
12	Effect of HO, SO4â^' and CO3â^'/HCO3 radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution. Chemical Engineering Journal, 2015, 267, 182-190.	12.7	51
13	Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. Science of the Total Environment, 2015, 537, 335-342.	8.0	31
14	Role of activated carbon on micropollutants degradation by different radiation processes. Mediterranean Journal of Chemistry, 2015, 4, 68-80.	0.7	8
15	Comparative study of oxidative degradation of sodium diatrizoate in aqueous solution by H2O2/Fe2+, H2O2/Fe3+, Fe (VI) and UV, H2O2/UV, K2S2O8/UV. Chemical Engineering Journal, 2014, 241, 504-512.	12.7	75
16	Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste. Carbon, 2014, 73, 338-350.	10.3	87
17	Role of activated carbon on micropollutans degradation by ionizing radiation. Carbon, 2014, 67, 288-299.	10.3	11
18	Surface modifications of activated carbon by gamma irradiation. Carbon, 2014, 67, 236-249.	10.3	73

#	Article	IF	CITATIONS
19	Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Science of the Total Environment, 2013, 442, 26-35.	8.0	91
20	Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. Journal of Environmental Management, 2013, 131, 16-24.	7.8	249
21	Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies – A review. Journal of Environmental Management, 2012, 109, 164-178.	7.8	239
22	Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. Journal of Colloid and Interface Science, 2012, 385, 174-182.	9.4	76
23	Ionic X-ray contrast media degradation in aqueous solution induced by gamma radiation. Chemical Engineering Journal, 2012, 195-196, 369-376.	12.7	18
24	Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons. Journal of Colloid and Interface Science, 2012, 369, 358-365.	9.4	52
25	Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 2007, 85, 833-846.	7.8	810
26	Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons. Carbon, 2003, 41, 2020-2022.	10.3	62
27	Experimental Design To Optimize Preparation of Activated Carbons for Use in Water Treatment. Environmental Science & Technology, 2002, 36, 3844-3849.	10.0	66
28	Carbon Materials as Adsorbents for the Removal of Pollutants from the Aqueous Phase. MRS Bulletin, 2001, 26, 890-894.	3.5	67
29	Synthesis, pore texture and surface acid–base character of TiO2/carbon composite xerogels and aerogels and their carbonized derivatives. Applied Catalysis A: General, 2000, 203, 151-159.	4.3	62
30	Group 6 metal oxide-carbon aerogels. Their synthesis, characterization and catalytic activity in the skeletal isomerization of 1-butene. Applied Catalysis A: General, 1999, 183, 345-356.	4.3	96
31	Textural Changes in Coals during Hydrogenation. Langmuir, 1996, 12, 5654-5658.	3.5	1
32	Influence and transformation of coal mineral matter during hydrogenation. Fuel, 1995, 74, 818-822.	6.4	9
33	Influence and modification of the porous texture of coals during hydrogenation. Fuel, 1995, 74, 823-829.	6.4	5
34	Hydrogenation of coals catalysed by Mo effect and transformation of porous texture. Fuel, 1995, 74, 1709-1715.	6.4	4
35	Influence of the Porous Texture of Coals on Their Hydrogenation Processes Catalyzed by Fe. Energy & Fuels, 1995, 9, 319-323.	5.1	5
36	Thermal desorption of gallic acid from activated carbon surfaces. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3213-3217.	1.7	5

José Rivera-Utrilla

#	Article	IF	CITATIONS
37	Activated carbon columns as adsorbents of gallic acid from aqueous solutions: Effect of the presence of different electrolytes. Carbon, 1992, 30, 107-111.	10.3	15
38	Steam gasification of a lignite char catalysed by metals from chromium to zinc. Fuel, 1992, 71, 105-108.	6.4	11
39	Vanadium pentoxide as catalyst in the air gasification of chars. Fuel, 1989, 68, 968-971.	6.4	11
40	Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids. Fuel, 1988, 67, 1615-1623.	6.4	65
41	A direct measurement of expansion in coals and macerais induced by carbon dioxide and methanol. Fuel, 1988, 67, 719-726.	6.4	86
42	The striking behaviour of copper catalysing the gasification reaction of coal chars in dry air. Fuel, 1987, 66, 113-118.	6.4	21
43	Reactivity of Spanish coal chars in dry air. Fuel, 1987, 66, 237-241.	6.4	15
44	Behaviour of Ag, Cu and Ag-Cu catalysts in the gasification reaction of a lignite char in air. Effect of SO2 on these catalysts. Fuel, 1986, 65, 1419-1422.	6.4	3
45	Adsorption of lead on activated carbons from olive stones. Journal of Chemical Technology and Biotechnology, 1986, 36, 47-52.	3.2	26
46	Study of heat-treated Spanish lignites. Fuel, 1985, 64, 666-673.	6.4	43
47	Gasification reaction of a lignite char catalysed by Cr, Mn, Fe, Co, Ni, Cu and Zn in dry and wet air. Fuel, 1985, 64, 1220-1223.	6.4	31