
Arthur M Krieg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11141205/publications.pdf Version: 2024-02-01

ADTHUD M KDIEC

#	Article	IF	CITATIONS
1	CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 1995, 374, 546-549.	27.8	3,329
2	CpG Motifs in Bacterial DNA and Their Immune Effects. Annual Review of Immunology, 2002, 20, 709-760.	21.8	2,342
3	Therapeutic potential of Toll-like receptor 9 activation. Nature Reviews Drug Discovery, 2006, 5, 471-484.	46.4	1,115
4	CpG Oligodeoxynucleotides Act as Adjuvants that Switch on T Helper 1 (Th1) Immunity. Journal of Experimental Medicine, 1997, 186, 1623-1631.	8.5	953
5	Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nature Immunology, 2002, 3, 499-499.	14.5	875
6	Identification of CpG oligonucleotide sequences with high induction of IFN- $\hat{I} \pm / \hat{I}^2$ in plasmacytoid dendritic cells. European Journal of Immunology, 2001, 31, 2154-2163.	2.9	790
7	Human Plasmacytoid Dendritic Cells Activated by CpG Oligodeoxynucleotides Induce the Generation of CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2004, 173, 4433-4442.	0.8	578
8	Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. Journal of Clinical Investigation, 2005, 115, 739-746.	8.2	569
9	Mechanism and Function of a Newly Identified CpG DNA Motif in Human Primary B Cells. Journal of Immunology, 2000, 164, 944-953.	0.8	567
10	Delineation of a CpG Phosphorothioate Oligodeoxynucleotide for Activating Primate Immune Responses In Vitro and In Vivo. Journal of Immunology, 2000, 164, 1617-1624.	0.8	550
11	Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. European Journal of Immunology, 2004, 34, 251-262.	2.9	537
12	Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Advanced Drug Delivery Reviews, 2009, 61, 195-204.	13.7	500
13	Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. Journal of Experimental Medicine, 2005, 202, 1575-1585.	8.5	478
14	Development of TLR9 agonists for cancer therapy. Journal of Clinical Investigation, 2007, 117, 1184-1194.	8.2	369
15	The role of CpG motifs in innate immunity. Current Opinion in Immunology, 2000, 12, 35-43.	5.5	321
16	Tollâ€like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunological Reviews, 2007, 220, 251-269.	6.0	313
17	CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine, 1998, 16, 1216-1224.	3.8	279
18	CpG motifs: the active ingredient in bacterial extracts?. Nature Medicine, 2003, 9, 831-835.	30.7	264

#	Article	IF	CITATIONS
19	Identification of RNA Sequence Motifs Stimulating Sequence-Specific TLR8-Dependent Immune Responses. Journal of Immunology, 2008, 180, 3729-3738.	0.8	264
20	Bacterial DNA-Induced NK Cell IFN-Î ³ Production Is Dependent on Macrophage Secretion of IL-12. Clinical Immunology and Immunopathology, 1997, 84, 185-193.	2.0	259
21	Malaria Blood Stage Parasites Activate Human Plasmacytoid Dendritic Cells and Murine Dendritic Cells through a Toll-Like Receptor 9-Dependent Pathway. Journal of Immunology, 2004, 172, 4926-4933.	0.8	245
22	The role of CpG dinucleotides in DNA vaccines. Trends in Microbiology, 1998, 6, 23-27.	7.7	229
23	Comparison of Cellular Binding and Uptake of Antisense Phosphodiester, Phosphorothioate, and Mixed Phosphorothioate and Methylphosphonate Oligonucleotides. Antisense Research and Development, 1993, 3, 53-66.	3.1	224
24	Divergent Therapeutic and Immunologic Effects of Oligodeoxynucleotides with Distinct CpG Motifs. Journal of Immunology, 2001, 167, 4878-4886.	0.8	221
25	CpG Motif Identification for Veterinary and Laboratory Species Demonstrates That Sequence Recognition Is Highly Conserved. Oligonucleotides, 2001, 11, 333-340.	4.3	202
26	Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Current Oncology Reports, 2004, 6, 88-95.	4.0	201
27	Phase II Trial of a Toll-Like Receptor 9–Activating Oligonucleotide in Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2006, 24, 5716-5724.	1.6	197
28	Role of Mitogen-Activated Protein Kinases in CpG DNA-Mediated IL-10 and IL-12 Production: Central Role of Extracellular Signal-Regulated Kinase in the Negative Feedback Loop of the CpG DNA-Mediated Th1 Response. Journal of Immunology, 2002, 168, 4711-4720.	0.8	190
29	Immunostimulatory Oligodeoxynucleotides Containing CpG Motifs Enhance the Efficacy of Monoclonal Antibody Therapy of Lymphoma. Blood, 1997, 89, 2994-2998.	1.4	184
30	Induction of Systemic TH1-Like Innate Immunity in Normal Volunteers Following Subcutaneous but Not Intravenous Administration of CPG 7909, a Synthetic B-Class CpG Oligodeoxynucleotide TLR9 Agonist. Journal of Immunotherapy, 2004, 27, 460-471.	2.4	178
31	CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. Aids, 2005, 19, 1473-1479.	2.2	173
32	CpG Still Rocks! Update on an Accidental Drug. Nucleic Acid Therapeutics, 2012, 22, 77-89.	3.6	171
33	Enhanced Dendritic Cell Maturation by TNF-α or Cytidine-Phosphate-Guanosine DNA Drives T Cell Activation In Vitro and Therapeutic Anti-Tumor Immune Responses In Vivo. Journal of Immunology, 2000, 165, 6278-6286.	0.8	167
34	CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine, 2000, 18, 1920-1924.	3.8	164
35	New Generation Vaccine Induces Effective Melanoma-Specific CD8+ T Cells in the Circulation but Not in the Tumor Site. Journal of Immunology, 2006, 177, 1670-1678.	0.8	157
36	Randomized Phase II Trial of a Toll-Like Receptor 9 Agonist Oligodeoxynucleotide, PF-3512676, in Combination With First-Line Taxane Plus Platinum Chemotherapy for Advanced-Stage Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2008, 26, 3979-3986.	1.6	157

#	Article	IF	CITATIONS
37	CpG DNA: A pathogenic factor in systemic lupus erythematosus?. Journal of Clinical Immunology, 1995, 15, 284-292.	3.8	155
38	Immune effects and mechanisms of action of CpG motifs. Vaccine, 2000, 19, 618-622.	3.8	148
39	CpG Oligodeoxynucleotide Enhances Tumor Response to Radiation. Cancer Research, 2004, 64, 5074-5077.	0.9	145
40	Oligodeoxynucleotide CpG 7909 Delivered as Intravenous Infusion Demonstrates Immunologic Modulation in Patients With Previously Treated Non-Hodgkin Lymphoma. Journal of Immunotherapy, 2006, 29, 558-568.	2.4	145
41	Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccine, 1999, 17, 3065-3071.	3.8	144
42	Interleukin-12- and Gamma Interferon-Dependent Protection against Malaria Conferred by CpG Oligodeoxynucleotide in Mice. Infection and Immunity, 2001, 69, 1643-1649.	2.2	144
43	Endogenous retroviruses: potential etiologic agents in autoimmunity. FASEB Journal, 1992, 6, 2537-2544.	0.5	142
44	Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. European Journal of Immunology, 2002, 32, 1212.	2.9	138
45	Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1489, 107-116.	2.4	133
46	Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll-like receptor 9 dependent T helper type 2 biased immune stimulation. Immunology, 2004, 113, 212-223.	4.4	133
47	CpG oligodeoxynucleotides do not require TH1 cytokines to prevent eosinophilic airway inflammation in a murine model of asthmaâ~†â~†â~tâ~ Journal of Allergy and Clinical Immunology, 1999, 104, 1258-1264.	2.9	132
48	The Toll-Like Receptor 7 (TLR7) Agonist, Imiquimod, and the TLR9 Agonist, CpG ODN, Induce Antiviral Cytokines and Chemokines but Do Not Prevent Vaginal Transmission of Simian Immunodeficiency Virus When Applied Intravaginally to Rhesus Macaques. Journal of Virology, 2005, 79, 14355-14370.	3.4	126
49	Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends in Microbiology, 1996, 4, 73-77.	7.7	122
50	Immunostimulatory CpG Oligodeoxynucleotides Enhance the Immune Response to Vaccine Strategies Involving Granulocyte-Macrophage Colony-Stimulating Factor. Blood, 1998, 92, 3730-3736.	1.4	119
51	Lymphoma Immunotherapy with CpG Oligodeoxynucleotides Requires TLR9 Either in the Host or in the Tumor Itself. Journal of Immunology, 2007, 179, 2493-2500.	0.8	119
52	Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Trends in Immunology, 2000, 21, 521-526.	7.5	117
53	CpG DNA Induces Maturation of Dendritic Cells with Distinct Effects on Nascent and Recycling MHC-II Antigen-Processing Mechanisms. Journal of Immunology, 2000, 165, 6889-6895.	0.8	117
54	An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. Translational Research, 1996, 128, 128-133.	2.3	113

#	Article	IF	CITATIONS
55	Phosphorothioate Oligodeoxynucleotides: Antisense or Anti-Protein?. Antisense Research and Development, 1995, 5, 241-241.	3.1	112
56	Phase I Trial of Toll-Like Receptor 9 Agonist PF-3512676 with and Following Rituximab in Patients with Recurrent Indolent and Aggressive Non–Hodgkin's Lymphoma. Clinical Cancer Research, 2007, 13, 6168-6174.	7.0	111
57	CpG oligodeoxynucleotides potentiate the antitumor effects of chemotherapy or tumor resection in an orthotopic murine model of rhabdomyosarcoma. Clinical Cancer Research, 2003, 9, 3105-14.	7.0	109
58	Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clinical Cancer Research, 2005, 11, 361-9.	7.0	109
59	Retroviruses and autoimmunity. Journal of Autoimmunity, 1990, 3, 137-166.	6.5	106
60	Direct Immunologic activities of CpG DNA and implications for gene therapy. Journal of Gene Medicine, 1999, 1, 56-63.	2.8	106
61	TLR9 Is Required for Protective Innate Immunity in Gram-Negative Bacterial Pneumonia: Role of Dendritic Cells. Journal of Immunology, 2007, 179, 3937-3946.	0.8	102
62	CpG Stimulation of Primary Mouse B Cells Is Blocked by Inhibitory Oligodeoxyribonucleotides at a Site Proximal to NF-κB Activation. Oligonucleotides, 2001, 11, 247-256.	4.3	101
63	Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunology, Immunotherapy, 2009, 58, 615-628.	4.2	100
64	CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine, 2000, 19, 950-957.	3.8	99
65	CpG Oligodeoxynucleotides Stimulate Protective Innate Immunity against Pulmonary <i>Klebsiella</i> Infection. Journal of Immunology, 2004, 173, 5148-5155.	0.8	99
66	Uptake of Oligodeoxyribonucleotides by Lymphoid Cells Is Heterogeneous and Inducible. Antisense Research and Development, 1991, 1, 161-171.	3.1	95
67	Antiinfective Applications of Toll-like Receptor 9 Agonists. Proceedings of the American Thoracic Society, 2007, 4, 289-294.	3.5	93
68	Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E797-803.	7.1	88
69	Lactoferrin Binds CpG-Containing Oligonucleotides and Inhibits Their Immunostimulatory Effects on Human B Cells. Journal of Immunology, 2001, 167, 2921-2928.	0.8	87
70	CpG Oligodeoxynucleotide and Montanide ISA 51 Adjuvant Combination Enhanced the Protective Efficacy of a Subunit Malaria Vaccine. Infection and Immunity, 2004, 72, 949-957.	2.2	87
71	Clinical Evaluation of Safety and Immunogenicity of PADRE-Cytomegalovirus (CMV) and Tetanus-CMV Fusion Peptide Vaccines With or Without PF03512676 Adjuvant. Journal of Infectious Diseases, 2012, 205, 1294-1304.	4.0	86
72	CpG oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma. Cancer Research, 2003, 63, 394-9.	0.9	86

#	Article	IF	CITATIONS
73	Modulating responsiveness of human TLR7 and 8 to small molecule ligands with T-rich phosphorothiate oligodeoxynucleotides. European Journal of Immunology, 2006, 36, 1815-1826.	2.9	83
74	Oligodeoxynucleotide Modifications Determine the Magnitude of B Cell Stimulation by CpG Motifs. Oligonucleotides, 1996, 6, 133-139.	4.3	81
75	Reduction of Antigen Expression from DNA Vaccines by Coadministered Oligodeoxynucleotides. Oligonucleotides, 1998, 8, 351-356.	4.3	81
76	CpG DNA rescues B cells from apoptosis by activating NFκB and preventing mitochondrial membrane potential disruption via a chloroquine-sensitive pathway. International Immunology, 1999, 11, 2015-2024.	4.0	81
77	Overcoming PD-1 Blockade Resistance with CpC-A Toll-Like Receptor 9 Agonist Vidutolimod in Patients with Metastatic Melanoma. Cancer Discovery, 2021, 11, 2998-3007.	9.4	80
78	Bacterial DNA and CpG–Containing Oligodeoxynucleotides Activate Cutaneous Dendritic Cells and Induce IL–12 Production: Implications for the Augmentation of Th1 Responses. International Archives of Allergy and Immunology, 1999, 118, 457-461.	2.1	79
79	Synthetic unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides are potent stimulators of antileukemia responses in naive and bone marrow transplant recipients. Blood, 2001, 98, 1217-1225.	1.4	79
80	Theoretical and Experimental Approaches to Generalized Autoimmunity. Immunological Reviews, 1990, 118, 129-163.	6.0	78
81	CpG-A-Induced Monocyte IFN-Î ³ -Inducible Protein-10 Production Is Regulated by Plasmacytoid Dendritic Cell-Derived IFN-α. Journal of Immunology, 2003, 170, 4061-4068.	0.8	78
82	APC Stimulated by CpG Oligodeoxynucleotide Enhance Activation of MHC Class I-Restricted T Cells. Journal of Immunology, 2000, 165, 6244-6251.	0.8	77
83	Now I know my CpGs. Trends in Microbiology, 2001, 9, 249-252.	7.7	75
84	TLR agonists regulate alloresponses and uncover a critical role for donor APCs in allogeneic bone marrow rejection. Blood, 2008, 112, 3508-3516.	1.4	75
85	A role for Toll in autoimmunity. Nature Immunology, 2002, 3, 423-424.	14.5	74
86	Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cellular Immunology, 2007, 250, 75-84.	3.0	74
87	Lipopolysaccharide and CpG DNA synergize for tumor necrosis factor-α production through activation of NF-κB. International Immunology, 2001, 13, 1391-1404.	4.0	73
88	Toll-Like Receptor 9 Regulates the Lung Macrophage Phenotype and Host Immunity in Murine Pneumonia Caused by <i>Legionella pneumophila</i> . Infection and Immunity, 2008, 76, 2895-2904.	2.2	71
89	Mechanisms and therapeutic applications of immune stimulatory CpG DNA. , 1999, 84, 113-120.		70
90	Comparative analysis of murine marrow–derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood, 2002, 100, 4169-4176.	1.4	69

#	Article	IF	CITATIONS
91	A Novel Class of Immune-Stimulatory CpG Oligodeoxynucleotides Unifies High Potency in Type I Interferon Induction with Preferred Structural Properties. Oligonucleotides, 2010, 20, 93-101.	2.7	67
92	C-Class CpG ODN: sequence requirements and characterization of immunostimulatory activities on mRNA level. Immunobiology, 2004, 209, 141-154.	1.9	66
93	Activation of Plasmacytoid Dendritic Cells with TLR9 Agonists Initiates Invariant NKT Cell-Mediated Cross-Talk with Myeloid Dendritic Cells. Journal of Immunology, 2006, 177, 1028-1039.	0.8	66
94	A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine, 2008, 26, 4849-4859.	3.8	61
95	Highly Immunostimulatory CpG-Free Oligodeoxynucleotides for Activation of Human Leukocytes. Oligonucleotides, 2002, 12, 165-175.	4.3	59
96	High Mobility Group B1 Protein Suppresses the Human Plasmacytoid Dendritic Cell Response to TLR9 Agonists. Journal of Immunology, 2006, 177, 8701-8707.	0.8	59
97	From Bugs to Drugs: Therapeutic Immunomodulation with Oligodeoxynucleotides Containing CpG Sequences from Bacterial DNA. Oligonucleotides, 2001, 11, 181-188.	4.3	56
98	Immunostimulatory CpG Oligodeoxynucleotide Confers Protection in a Murine Model of Infection with Burkholderia pseudomallei. Infection and Immunity, 2004, 72, 4494-4502.	2.2	56
99	Convergence of CpG DNA- and BCR-mediated signals at the c-Jun N-terminal kinase and NF-kappaB activation pathways: regulation by mitogen-activated protein kinases. International Immunology, 2003, 15, 577-591.	4.0	53
100	Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals. Immunology, 2007, 120, 526-535.	4.4	52
101	Modulation of CpG Oligodeoxynucleotide-Mediated Immune Stimulation by Locked Nucleic Acid (LNA). Oligonucleotides, 2004, 14, 23-31.	2.7	51
102	Stimulation via Tollâ€like receptor 9 reduces <i>Cryptococcus neoformans</i> â€induced pulmonary inflammation in an ILâ€12â€dependent manner. European Journal of Immunology, 2005, 35, 273-281.	2.9	51
103	Deoxycytidyl-Deoxyguanosine Oligonucleotide Classes A, B, and C Induce Distinct Cytokine Gene Expression Patterns in Rhesus Monkey Peripheral Blood Mononuclear Cells and Distinct Alpha Interferon Responses in TLR9-Expressing Rhesus Monkey Plasmacytoid Dendritic Cells. Vaccine Journal, 2005, 12, 606-621.	3.1	51
104	Oligonucleotides with novel, cationic backbone substituents: aminoethylphosphonates. Nucleic Acids Research, 1994, 22, 5416-5424.	14.5	49
105	CpG oligodeoxynucleotides stimulate IFN-Î ³ -inducible protein-10 production in human B cells. Journal of Endotoxin Research, 2004, 10, 431-438.	2.5	48
106	Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunological Reviews, 1999, 168, 217-239.	6.0	47
107	Interleukin-10 Functions <i>In Vitro</i> and <i>In Vivo</i> to Inhibit Bacterial DNA-Induced Secretion of Interleukin-12. Journal of Interferon and Cytokine Research, 1997, 17, 781-788.	1.2	45
108	CpG-DNA protects against a lethal orthopoxvirus infection in a murine model. Antiviral Research, 2005, 65, 87-95.	4.1	45

#	Article	IF	CITATIONS
109	Paradoxical enhancement of CD8 T cell-dependent anti-tumor protection despite reduced CD8 T cell responses with addition of a TLR9 agonist to a tumor vaccine. International Journal of Cancer, 2007, 121, 1520-1528.	5.1	45
110	Heterogeneous Expression and Coordinate Regulation of Endogenous Retroviral Sequences in Human Peripheral Blood Mononuclear Cells. AIDS Research and Human Retroviruses, 1992, 8, 1991-1998.	1.1	44
111	P-Chirality-Dependent Immune Activation by Phosphorothioate CpG Oligodeoxynucleotides. Oligonucleotides, 2003, 13, 491-499.	2.7	44
112	CpG DNA: Trigger of Sepsis, Mediator of Protection, or Both?. Scandinavian Journal of Infectious Diseases, 2003, 35, 653-659.	1.5	44
113	Synergy between CpG- or non-CpG DNA and specific antigen for B cell activation. International Immunology, 2003, 15, 223-231.	4.0	44
114	CpG DNA: a novel immunomodulator. Trends in Microbiology, 1999, 7, 64-65.	7.7	42
115	Antibody Repertoire Development in Fetal and Neonatal Piglets. IX. Three Pathogen-Associated Molecular Patterns Act Synergistically to Allow Germfree Piglets to Respond to Type 2 Thymus-Independent and Thymus-Dependent Antigens. Journal of Immunology, 2005, 175, 6772-6785.	0.8	42
116	Biodegradable microspheres containing group B Streptococcus vaccine: Immune response in mice. American Journal of Obstetrics and Gynecology, 2001, 185, 1174-1179.	1.3	41
117	Safety, Pharmacokinetics and Immune Effects in Normal Volunteers of CPG 10101 (ACTILONâ"¢), an Investigational Synthetic Toll-like Receptor 9 Agonist. Antiviral Therapy, 2007, 12, 741-751.	1.0	40
118	CpG DNA induces cyclooxygenase-2 expression and prostaglandin production. International Immunology, 2001, 13, 1013-1020.	4.0	37
119	Sequences derived from self-RNA containing certain natural modifications act as suppressors of RNA-mediated inflammatory immune responses. International Immunology, 2009, 21, 607-619.	4.0	37
120	Antibody Opsonization of a TLR9 Agonist–Containing Virus-like Particle Enhances In Situ Immunization. Journal of Immunology, 2020, 204, 1386-1394.	0.8	37
121	Administration of a Phosphorothioate Oligonucleotide Antisense to Murine Endogenous Retroviral MCF env Causes Immune Effects in Vivo in a Sequence-Specific Manner. Clinical Immunology and Immunopathology, 1993, 67, 130-136.	2.0	36
122	Comparison of CpG s-ODNs, chromatin immune complexes, and dsDNA fragment immune complexes in the TLR9-dependent activation of rheumatoid factor B cells. Journal of Endotoxin Research, 2004, 10, 247-251.	2.5	36
123	Whole blood cultures to assess the immunostimulatory activities of CpG oligodeoxynucleotides. Journal of Immunological Methods, 2001, 247, 83-94.	1.4	34
124	A CpG Oligonucleotide Can Protect Mice from a Low Aerosol Challenge Dose of Burkholderia mallei. Infection and Immunity, 2006, 74, 1944-1948.	2.2	34
125	The Toll of Too Much TLR7. Immunity, 2007, 27, 695-697.	14.3	33
126	Nonspecific Suppression of [3H]Thymidine Incorporation by "Control" Oligonucleotides. Antisense Research and Development, 1992, 2, 325-330.	3.1	32

#	Article	IF	CITATIONS
127	Structure–Activity Relationship Studies on the Immune Stimulatory Effects of Base-Modified CpG Toll-Like Receptor 9 Agonists. ChemMedChem, 2006, 1, 1007-1014.	3.2	32
128	Biodistribution and metabolism of immunostimulatory oligodeoxynucleotide CPG 7909 in mouse and rat tissues following subcutaneous administration. Biochemical Pharmacology, 2005, 69, 981-991.	4.4	30
129	Innate immune responses induced by classes of CpG oligodeoxynucleotides in ovine lymph node and blood mononuclear cells. Veterinary Immunology and Immunopathology, 2007, 115, 24-34.	1.2	30
130	Toll-free vaccines?. Nature Biotechnology, 2007, 25, 303-305.	17.5	30
131	CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague. Vaccine, 2009, 27, 2220-2229.	3.8	30
132	Type I Interferon Is the Primary Regulator of Inducible Ly-6C Expression on T Cells. Journal of Interferon and Cytokine Research, 2001, 21, 621-629.	1.2	29
133	Immunostimulatory CpG oligonucleotides enhance the immune response of anti-idiotype vaccine that mimics carcinoembryonic antigen. Cancer Immunology, Immunotherapy, 2003, 52, 317-327.	4.2	29
134	CpG oligonucleotides enhance the tumor antigen-specific immune response of an anti-idiotype antibody-based vaccine strategy in CEA transgenic mice. Cancer Immunology, Immunotherapy, 2006, 55, 515-527.	4.2	28
135	Decreased cytotoxic T cell activity generated by co-administration of PSA vaccine and CpG ODN is associated with increased tumor protection in a mouse model of prostate cancer. Vaccine, 2006, 24, 6155-6162.	3.8	27
136	Immunopharmacology of CpG Oligodeoxynucleotides and Ribavirin. Antimicrobial Agents and Chemotherapy, 2004, 48, 2314-2317.	3.2	26
137	Surgical excision combined with autologous whole tumor cell vaccination is an effective therapy for murine neuroblastoma. Journal of Pediatric Surgery, 2006, 41, 1361-1368.	1.6	26
138	Stimulation of Innate Immune Responses by CpG Oligodeoxynucleotide in Newborn Lambs Can Reduce Bovine Herpesvirus-1 Shedding. Oligonucleotides, 2006, 16, 58-67.	2.7	26
139	Increased expression of novel full-length endogenous mink cell focus-forming-related transcripts in autoimmune mouse strains. Virology, 1988, 162, 274-276.	2.4	25
140	Inhibitory Oligonucleotides Block the Induction of AP-1 Transcription Factor by Stimulatory CpG Oligonucleotides in B Cells. Oligonucleotides, 2003, 13, 143-150.	4.3	24
141	Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo antitumor protective responses. Experimental Hematology, 2006, 34, 1403-1412.	0.4	24
142	Combining Vaccination and Postexposure CpG Therapy Provides Optimal Protection Against Lethal Sepsis in a Biodefense Model of Human Melioidosis. Journal of Infectious Diseases, 2011, 204, 636-644.	4.0	24
143	Immune effects and therapeutic applications of CpG motifs in bacterial DNA. Immunopharmacology, 2000, 48, 303-305.	2.0	23
144	Oral Pretreatment of Mice with CpG DNA Reduces Susceptibility to Oral or Intraperitoneal Challenge with Virulent Listeria monocytogenes. Infection and Immunity, 2003, 71, 4398-4404.	2.2	23

#	Article	IF	CITATIONS
145	Expression of an endogenous retroviral transcript is associated with murine lupus. Arthritis and Rheumatism, 1989, 32, 322-329.	6.7	22
146	Immunostimulatory Potential of Silencing RNAs Can Be Mediated by a Non-Uridine-Rich Toll-Like Receptor 7 Motif. Nucleic Acid Therapeutics, 2011, 21, 201-214.	3.6	21
147	NK cells activated in vivo by bacterial DNA control the intracellular growth of Francisella tularensis LVS. Microbes and Infection, 2009, 11, 49-56.	1.9	20
148	Immunostimulatory effects of three classes of CpG oligodeoxynucleotides on PBMC from HCV chronic carriers. Journal of Immune Based Therapies and Vaccines, 2008, 6, 3.	2.4	19
149	AlMing 2 defend against intracellular pathogens. Nature Immunology, 2010, 11, 367-369.	14.5	19
150	Retroviruses and Their Roles in Chronic Inflammatory Diseases and Autoimmunity. , 1995, , 491-603.		19
151	TLR9 and DNA 'feel' RACE. Nature Immunology, 2007, 8, 475-477.	14.5	18
152	Safety, pharmacokinetics and immune effects in normal volunteers of CPG 10101 (ACTILON), an investigational synthetic toll-like receptor 9 agonist. Antiviral Therapy, 2007, 12, 741-51.	1.0	18
153	The CpG Motif. BioDrugs, 1998, 10, 341-346.	4.6	17
154	Antitumor Mechanisms of Oligodeoxynucleotides with CpG and PolyG Motifs in Murine Prostate Cancer Cells: Decrease of NF-IºB and AP-1 Binding Activities and Induction of Apoptosis. Oligonucleotides, 2002, 12, 155-164.	4.3	17
155	Impact of modifications of heterocyclic bases in CpG dinucleotides on their immune-modulatory activity. Journal of Leukocyte Biology, 2004, 76, 585-593.	3.3	17
156	The Toll of Cathepsin K Deficiency. Science, 2008, 319, 576-577.	12.6	17
157	Activation of Innate Immunity in Healthy Macaca mulatta Macaques by a Single Subcutaneous Dose of GMP CpG 7909: Safety Data and Interferon-Inducible Protein-10 Kinetics for Humans and Macaques. Vaccine Journal, 2008, 15, 221-226.	3.1	17
158	Inhibition of T4 Polynucleotide Kinase Activity by Phosphorothioate and Chimeric Oligodeoxynucleotides. Antisense Research and Development, 1994, 4, 295-297.	3.1	16
159	A possible cause of joint destruction in septic arthritis. Arthritis Research, 1999, 1, 3.	2.0	15
160	Minding the Cs and Gs. Molecular Therapy, 2000, 1, 209-210.	8.2	15
161	Accumulation of Glutathione Disulfide Mediates NF-κB Activation During Immune Stimulation with CpG DNA. Oligonucleotides, 2002, 12, 327-340.	4.3	15
162	Attenuated cytokine responses in porcine lymph node cells stimulated with CpG DNA are associated with low frequency of IFNα-producing cells and TLR9 mRNA expression. Veterinary Immunology and Immunopathology, 2008, 123, 324-336.	1.2	15

#	Article	IF	CITATIONS
163	Positive T cell co-stimulation by TLR7/8 ligands is dependent on the cellular environment. Immunobiology, 2011, 216, 12-23.	1.9	15
164	CD14+ cells are required for IL-12 response in bovine blood mononuclear cells activated with Toll-like receptor (TLR) 7 and TLR8 ligands. Veterinary Immunology and Immunopathology, 2008, 126, 273-282.	1.2	14
165	Identification of an Oligodeoxynucleotide Sequence Motif That Specifically Inhibits Phosphorylation by Protein Tyrosine Kinases. Oligonucleotides, 1997, 7, 115-123.	4.3	13
166	Rescue of B cells from apoptosis by immune stimulatory CpG DNA. Seminars in Immunopathology, 2000, 22, 55-61.	4.0	13
167	Signal transduction induced by immunostimulatory CpG DNA. Seminars in Immunopathology, 2000, 22, 97-106.	4.0	13
168	Applications of antisense oligodeoxynucleotides in immunology and autoimmunity research. ImmunoMethods, 1992, 1, 191-202.	0.8	12
169	Bacterial DNA does not increase serum corticosterone concentration or prevent increases induced by other stimuli. International Immunopharmacology, 2001, 1, 1605-1614.	3.8	12
170	Interruption of a transforming growth factor α autocrine loop in Caco-2 cells by antisense oligodeoxynucleotides. Gastroenterology, 1995, 109, 1882-1889.	1.3	11
171	Direct Immunologic activities of CpG DNA and implications for gene therapy. Journal of Gene Medicine, 1999, 1, 56-63.	2.8	10
172	Systemic innate immune responses following intrapulmonary delivery of CpG oligodeoxynucleotides in sheep. Veterinary Immunology and Immunopathology, 2007, 115, 357-368.	1.2	10
173	B Cells Express Ly-6C in a Th1 but Not Th2 Cytokine Environment. Journal of Interferon and Cytokine Research, 2002, 22, 799-806.	1.2	9
174	Induction of autoantibody production but not autoimmune disease in HEL transgenic mice vaccinated with HEL in combination with CpG or control oligodeoxynucleotides. Vaccine, 2004, 22, 2641-2650.	3.8	9
175	AlMing 2 Detect Foreign DNA. Science Signaling, 2009, 2, pe39.	3.6	8
176	Subcutaneous, but not intratracheal administration of the TLR9 agonist, CpG DNA transiently reduces parainfluenza-3 virus shedding in newborn lambs. Comparative Immunology, Microbiology and Infectious Diseases, 2010, 33, e111-e117.	1.6	7
177	Molecular Aspects of Systemic Lupus Erythematosus: Murine Endogenous Retroviral Expression. DNA and Cell Biology, 1992, 11, 253-257.	1.9	6
178	PD3-1-6: PF-3512676 (CPG 7909), a toll-like receptor 9 agonist-status of development for non-small cell lung cancer (NSCLC). Journal of Thoracic Oncology, 2007, 2, S461.	1.1	6
179	Early development of the Toll-like receptor 9 agonist, PF-3512676, for the treatment of patients with advanced cancers. Expert Opinion on Drug Discovery, 2009, 4, 587-603.	5.0	6
180	Role of Endogenous Retroviruses in Autoimmune Diseases Tohoku Journal of Experimental Medicine, 1994, 173, 105-114.	1.2	5

#	Article	IF	CITATIONS
181	CpG Oligodeoxynucleotides. , 2001, 31, 229-232.		5
182	CpG ODN As a Th1 Immune Enhancer for Prophylactic and Therapeutic Vaccines. , 2006, , 87-110.		5
183	The ability of CpG oligonucleotides to protect mice against Francisella tularensis live vaccine strain but not fully virulent F.Âtularensis subspecies holarctica is reflected in cell-based assays. Microbial Pathogenesis, 2013, 63, 16-18.	2.9	4
184	Potential of Antisense Technology in the Treatment of Immunological Disorders. BioDrugs, 1995, 4, 169-179.	0.7	3
185	Potential use of CpG ODN for cancer immunotherapy. Update on Cancer Therapeutics, 2006, 1, 49-58.	0.4	3
186	Identification of CpG oligonucleotide sequences with high induction of IFN-1^ \pm /1 ² in plasmacytoid dendritic cells. , 2001, 31, 2154.		3
187	Immunostimulatory CpG Oligodeoxynucleotides Enhance the Immune Response to Vaccine Strategies Involving Granulocyte-Macrophage Colony-Stimulating Factor. Blood, 1998, 92, 3730-3736.	1.4	3
188	Toll-like receptor 9 activation with CpG oligodeoxynucleotides for asthma therapy. Progress in Respiratory Research, 2010, , 95-99.	0.1	2
189	Immune Effects of Bacterial DNA and Their Possible Role in the Pathogenesis of Lupus. , 1999, , 79-100.		2
190	CpG Oligodeoxynucleotides for Mucosal Vaccines. , 2005, , 959-965.		2
191	How to Exclude Immunostimmulatory and Other Nonantisense Effects of Antisense Oligonucleotides. Perspectives in Antisense Science, 1999, , 79-89.	0.2	1
192	Rigging Innate Immunity against the Flu. Molecular Therapy, 2017, 25, 1993-1994.	8.2	0
193	Signal transduction induced by immunostimulatory CpG DNA. , 2001, , 97-105.		Ο
194	Rescue of B cells from apoptosis by immune stimulatory CpG DNA. , 2001, , 55-61.		0
195	Immunostimulatory Potential of Silencing RNAs Can Be Mediated by a Non-Uridine-Rich Toll-Like Receptor 7 Motif. Oligonucleotides, 0, , 121102072334007.	2.7	Ο