
Victor D Vacquier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11140666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rapid evolution of reproductive proteins. Nature Reviews Genetics, 2002, 3, 137-144.	16.3	1,177
2	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
3	The isolation of intact cortical granules from sea urchin eggs: Calcium ions trigger granule discharge. Developmental Biology, 1975, 43, 62-74.	2.0	347
4	Maximum-Likelihood Analysis of Molecular Adaptation in Abalone Sperm Lysin Reveals Variable Selective Pressures Among Lineages and Sites. Molecular Biology and Evolution, 2000, 17, 1446-1455.	8.9	224
5	Reproductive Protein Evolution. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 161-179.	6.7	202
6	Dynamic changes of the egg cortex. Developmental Biology, 1981, 84, 1-26.	2.0	191
7	Concerted Evolution in an Egg Receptor for a Rapidly Evolving Abalone Sperm Protein. , 1998, 281, 710-712.		182
8	Exploring the Phylogenetic Utility of ITS Sequences for Animals: A Test Case for Abalone (Haliotis). Journal of Molecular Evolution, 2002, 54, 246-257.	1.8	167
9	The Fucose Sulfate Polymer of Egg Jelly Binds to Sperm REJ and Is the Inducer of the Sea Urchin Sperm Acrosome Reaction. Developmental Biology, 1997, 192, 125-135.	2.0	145
10	Positive selection in the egg receptor for abalone sperm lysin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4639-4643.	7.1	145
11	Species specific agglutination of eggs by bindin isolated from sea urchin sperm. Nature, 1977, 267, 836-838.	27.8	135
12	A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism. Developmental Biology, 1982, 92, 227-239.	2.0	128
13	Positive darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence?. Journal of Molecular Evolution, 1997, 44, S15-S22.	1.8	122
14	Sea Urchin Eggs Release Protease Activity at Fertilization. Nature, 1972, 237, 34-36.	27.8	121
15	Monoclonal antibody to a membrane glycoprotein inhibits the acrosome reaction and associated Ca2+ and H+ fluxes of sea urchin sperm. Cell, 1985, 40, 697-703.	28.9	118
16	Protease Activity establishes the Block against Polyspermy in Sea Urchin Eggs. Nature, 1972, 240, 352-353.	27.8	116
17	What have we learned about sea urchin sperm bindin?. Development Growth and Differentiation, 1995, 37, 1-10.	1.5	116
18	Activation of Sea Urchin Gametes. Annual Review of Cell Biology, 1986, 2, 1-26.	26.1	103

#	Article	IF	CITATIONS
19	Selection in the Rapid Evolution of Gamete Recognition Proteins in Marine Invertebrates. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002931-a002931.	5.5	98
20	Positive Selection and Propeptide Repeats Promote Rapid Interspecific Divergence of a Gastropod Sperm Protein. Molecular Biology and Evolution, 2000, 17, 458-466.	8.9	90
21	Glycobiology of sperm-egg interactions in deuterostomes. Glycobiology, 2001, 11, 37R-43R.	2.5	89
22	A flagellar K+-dependent Na+/Ca2+ exchanger keeps Ca2+ low in sea urchin spermatozoa. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6743-6748.	7.1	87
23	Ligands and receptors mediating signal transduction in sea urchin spermatozoa. Reproduction, 2004, 127, 141-149.	2.6	84
24	Chapter 2 Immunoperoxidase Localization of Bindin During the Adhesion of Sperm to Sea Urchin Eggs. Current Topics in Developmental Biology, 1979, 13 Pt 1, 31-44.	2.2	83
25	Polymorphism in Abalone Fertilization Proteins Is Consistent with the Neutral Evolution of the Egg's Receptor for Lysin (VERL) and Positive Darwinian Selection of Sperm Lysin. Molecular Biology and Evolution, 2001, 18, 376-383.	8.9	83
26	suREJ3, a Polycystin-1 Protein, Is Cleaved at the GPS Domain and Localizes to the Acrosomal Region of Sea Urchin Sperm. Journal of Biological Chemistry, 2002, 277, 943-948.	3.4	83
27	Abalone sperm lysin: unusual mode of evolution of a gamete recognition protein. Zygote, 1993, 1, 181-196.	1.1	79
28	Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. Journal of Cell Biology, 2003, 160, 597-604.	5.2	72
29	Full-length sequence of VERL, the egg vitelline envelope receptor for abalone sperm lysin. Gene, 2002, 288, 111-117.	2.2	66
30	The apical lamina of the sea urchin embryo: Major glycoproteins associated with the hyaline layer. Developmental Biology, 1982, 89, 168-178.	2.0	65
31	Polycystin-2 associates with the polycystin-1 homolog, suREJ3, and localizes to the acrosomal region of sea urchin spermatozoa. Molecular Reproduction and Development, 2004, 67, 472-477.	2.0	62
32	The rise and fall of intracellular pH of sea urchin eggs after fertilisation. Nature, 1977, 269, 590-592.	27.8	61
33	DNA synthesis in unfertilized sea urchin eggs can be turned on and turned off by the addition and removal of procaine hydrochloride. Developmental Biology, 1975, 47, 12-31.	2.0	58
34	Morphology of abalone spermatozoa before and after the acrosome reaction. Journal of Ultrastructure Research, 1980, 72, 39-46.	1.1	57
35	Interspecies Chimeric Sperm Lysins Identify Regions Mediating Species-Specific Recognition of the Abalone Egg Vitelline Envelope. Developmental Biology, 1999, 214, 151-159.	2.0	56
36	ZP Domain Proteins in the Abalone Egg Coat Include a Paralog of VERL under Positive Selection That Binds Lysin and 18-kDa Sperm Proteins. Molecular Biology and Evolution, 2010, 27, 193-203.	8.9	56

#	Article	IF	CITATIONS
37	Fusion of liposomes induced by a cationic protein from the acrosome granule of abalone spermatozoa. Biochemistry, 1986, 25, 543-549.	2.5	53
38	Abalone lysin: the dissolving and evolving sperm protein. BioEssays, 2000, 23, 95-103.	2.5	53
39	A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Developmental Biology, 2006, 300, 416-433.	2.0	53
40	A perforin-like protein from a marine mollusk. Biochemical and Biophysical Research Communications, 2004, 316, 468-475.	2.1	51
41	The quest for the sea urchin egg receptor for sperm. Biochemical and Biophysical Research Communications, 2012, 425, 583-587.	2.1	50
42	The Isolation of Acrosome-Reaction-Inducing Glycoproteins from Sea Urchin Egg Jelly. Developmental Biology, 1994, 162, 304-312.	2.0	49
43	Sp-tetraKCNG: A novel cyclic nucleotide gated K+ channel. Biochemical and Biophysical Research Communications, 2007, 354, 668-675.	2.1	49
44	THE FERTILIZING CAPACITY OF SEA URCHIN SPERM RAPIDLY DECREASES AFTER INDUCTION OF THE ACROSOME REACTION*. Development Growth and Differentiation, 1979, 21, 61-69.	1.5	47
45	Increased Association of Synaptosome-associated Protein of 25 kDa with Syntaxin and Vesicle-associated Membrane Protein following Acrosomal Exocytosis of Sea Urchin Sperm. Journal of Biological Chemistry, 1998, 273, 24355-24359.	3.4	47
46	Co-localization of receptor and transducer proteins in the glycosphingolipid-enriched, low density, detergent-insoluble membrane fraction of sea urchin sperm. Glycoconjugate Journal, 2000, 17, 205-214.	2.7	47
47	Egg Sialoglycans Increase Intracellular pH and Potentiate the Acrosome Reaction of Sea Urchin Sperm. Journal of Biological Chemistry, 2002, 277, 8041-8047.	3.4	47
48	Flagellasialin: a novel sulfated Â2,9-linked polysialic acid glycoprotein of sea urchin sperm flagella. Glycobiology, 2006, 16, 1229-1241.	2.5	47
49	Positive Selection in the Carbohydrate Recognition Domains of Sea Urchin Sperm Receptor for Egg Jelly (suREJ) Proteins. Molecular Biology and Evolution, 2005, 22, 533-541.	8.9	45
50	Particulate and soluble adenylyl cyclases participate in the sperm acrosome reaction. Biochemical and Biophysical Research Communications, 2007, 358, 1128-1135.	2.1	45
51	Oyster sperm bindin is a combinatorial fucose lectin with remarkable intra-species diversity. International Journal of Developmental Biology, 2008, 52, 759-768.	0.6	45
52	High Molecular Mass Egg Fucose Sulfate Polymer Is Required for Opening Both Ca2+ Channels Involved in Triggering the Sea Urchin Sperm Acrosome Reaction. Journal of Biological Chemistry, 2002, 277, 1182-1189.	3.4	43
53	Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella. Cytoskeleton, 2006, 63, 582-590.	4.4	43
54	Calcium-mediated release of glucanase activity from cortical granules of sea urchin eggs. Developmental Biology, 1983, 100, 267-274.	2.0	42

#	Article	IF	CITATIONS
55	The cytolytic isolation of the cortex of the sea urchin egg. Developmental Biology, 1980, 77, 178-190.	2.0	41
56	A soluble adenylyl cyclase from sea urchin spermatozoa. Gene, 2005, 353, 231-238.	2.2	41
57	The Molecular Basis of Sex: Linking Yeast to Human. Molecular Biology and Evolution, 2011, 28, 1963-1966.	8.9	41
58	Liposome Fusion Induced by a Mr 18 000 Protein Localized to the Acrosomal Region of Acrosome-Reacted Abalone Spermatozoa. Biochemistry, 1995, 34, 14202-14208.	2.5	40
59	Isolation of sperm bindin from the oyster (Crassostrea gigas). Gamete Research, 1978, 1, 89-99.	1.7	39
60	Antibody to a sperm surface glycoprotein inhibits the egg jelly-induced acrosome reaction of sea urchin sperm. Developmental Biology, 1980, 79, 325-333.	2.0	39
61	Store-operated calcium channels trigger exocytosis of the sea urchin sperm acrosomal vesicle. Biochemical and Biophysical Research Communications, 2003, 304, 285-292.	2.1	39
62	Chromosomal Abnormalities resulting from Ethidium Bromide Treatment. Nature, 1969, 222, 193-195.	27.8	38
63	Chapter 2 Handling, Labeling, and Fractionating Sea Urchin Spermatozoa. Methods in Cell Biology, 1986, 27, 15-40.	1.1	38
64	Bindin genes of the Pacific oyster Crassostrea gigas. Gene, 2008, 423, 215-220.	2.2	38
65	Isolation and characterization of a plasma membrane fraction from sea urchin sperm exhibiting species specific recognition of the egg surface. Biochimica Et Biophysica Acta - Biomembranes, 1984, 778, 25-37.	2.6	37
66	Activation of sea urchin spermatozoa during fertilization. Trends in Biochemical Sciences, 1986, 11, 77-81.	7.5	37
67	Structural requirements for species-specific induction of the sperm acrosome reaction by sea urchin egg sulfated fucan. Biochemical and Biophysical Research Communications, 2002, 298, 403-407.	2.1	37
68	The increased phosphorylation of ribosomal protein S6 in Arbacia punctulata is not a universal event in the activation of sea urchin eggs. Developmental Biology, 1983, 95, 360-371.	2.0	35
69	Tandem mass spectrometry identifies proteins phosphorylated by cyclic AMP-dependent protein kinase when sea urchin sperm undergo the acrosome reaction. Developmental Biology, 2005, 285, 116-125.	2.0	35
70	Cyclic GMP-specific Phosphodiesterase-5 Regulates Motility of Sea Urchin Spermatozoa. Molecular Biology of the Cell, 2006, 17, 114-121.	2.1	35
71	A new hyperpolarization-activated, cyclic nucleotide-gated channel from sea urchin sperm flagella. Biochemical and Biophysical Research Communications, 2005, 334, 96-101.	2.1	34
72	The appearance of β-1,3-glucanohydrolase activity during the differentiation of the gut of sand dollar plutei. Developmental Biology, 1971, 26, 1-10.	2.0	33

#	Article	IF	CITATIONS
73	Isolated cortical granules: A model system for studying membrane fusion and calcium-mediated exocytosis. Journal of Supramolecular Structure, 1976, 5, 27-35.	2.3	32
74	Egg fucose sulfate polymer, sialoglycan, and speract all trigger the sea urchin sperm acrosome reaction. Biochemical and Biophysical Research Communications, 2002, 296, 833-839.	2.1	31
75	The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC Genomics, 2007, 8, 235.	2.8	31
76	Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase. PLoS ONE, 2007, 2, e797.	2.5	29
77	THE EFFECT OF SOLUBLE EGG JELLY ON THE FERTILIZABILITY OF ACID-DEJELLIED SEA URCHIN EGGS*. Development Growth and Differentiation, 1979, 21, 47-60.	1.5	28
78	Inhibition of sea urchin sperm acrosome reaction by antibodies directed against two sperm membrane proteins. Experimental Cell Research, 1984, 155, 467-476.	2.6	28
79	Radioiodination and characterization of the plasma membrane of sea urchin sperm. Developmental Biology, 1980, 76, 15-25.	2.0	27
80	Stoichiometry of phosphate loss from sea urchin sperm guanylate cyclase during fertilization. Biochemical and Biophysical Research Communications, 1986, 137, 1148-1152.	2.1	27
81	Anion channels in the sea urchin sperm plasma membrane. Molecular Reproduction and Development, 1993, 36, 174-182.	2.0	27
82	Phosphorylation of sperm histone H1 is induced by the egg jelly layer in the sea urchin Strongylocentrotus purpuratus. Developmental Biology, 1986, 116, 203-212.	2.0	26
83	Structural features of the abalone egg extracellular matrix and its role in gamete interaction during fertilization. Molecular Reproduction and Development, 1995, 41, 493-502.	2.0	26
84	Laboratory on sea urchin fertilization. Molecular Reproduction and Development, 2011, 78, 553-564.	2.0	26
85	Characterization and comparison of "bindin―isolated from sperm of two species of sea urchins. Biochemical and Biophysical Research Communications, 1977, 79, 159-165.	2.1	25
86	Evidence for a secretory pathway Ca2+-ATPase in sea urchin spermatozoa. FEBS Letters, 2006, 580, 3900-3904.	2.8	25
87	The high resolution crystal structure of green abalone sperm lysin: implications for species-specific binding of the egg receptor 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 296, 1225-1234.	4.2	24
88	The Crystal Structure of a Fusagenic Sperm Protein Reveals Extreme Surface Propertiesâ€,‡. Biochemistry, 2001, 40, 5407-5413.	2.5	24
89	Sea Urchin Spermatozoa. Methods in Cell Biology, 2004, 74, 523-544.	1.1	23
90	Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa. Journal of Cellular Physiology, 2006, 207, 413-419.	4.1	23

#	Article	IF	CITATIONS
91	Soluble adenylyl cyclase of sea urchin spermatozoa. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2621-2628.	3.8	23
92	The species-specificity and structure of abalone sperm lysin. Seminars in Developmental Biology, 1994, 5, 209-215.	1.3	21
93	The Interactions of Sea Urchin Gametes During Fertilization. American Zoologist, 1979, 19, 839-849.	0.7	20
94	A third sea urchin sperm receptor for egg jelly module protein, suREJ2, concentrates in the plasma membrane over the sperm mitochondrion. Development Growth and Differentiation, 2004, 46, 53-60.	1.5	20
95	Purification of sea urchin sperm bindin by DEAE-cellulose chromatography. Analytical Biochemistry, 1983, 129, 497-501.	2.4	19
96	Regulation of abalone sperm cyclic AMP concentrations and the acrosome reaction by calcium and methylxanthines. Developmental Biology, 1983, 98, 28-36.	2.0	19
97	A Sea Urchin Sperm Flagellar Adenylate Kinase with Triplicated Catalytic Domains. Journal of Biological Chemistry, 2007, 282, 2947-2955.	3.4	19
98	Monoclonal antibodies to the sea urchin egg vitelline layer inhibit fertilization by blocking sperm adhesion. Experimental Cell Research, 1983, 147, 75-84.	2.6	18
99	Reusable cDNA libraries coupled to magnetic beads. Analytical Biochemistry, 1992, 206, 206-207.	2.4	18
100	1.35 and 2.07â€Ã resolution structures of the red abalone sperm lysin monomer and dimer reveal features involved in receptor binding. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 34-41.	2.5	18
101	Abalone lysin: the dissolving and evolving sperm protein. BioEssays, 2001, 23, 95-103.	2.5	18
102	The appearance of α-amylase activity during gut differentiation in sand dollar plutei. Developmental Biology, 1971, 26, 393-399.	2.0	17
103	Sperm-specific surface antigenicity common to seven animal phyla. Nature, 1980, 288, 397-399.	27.8	17
104	Monoclonal antibodies induce the translocation, patching, and shedding of surface antigens of sea urchin spermatozoa. Experimental Cell Research, 1988, 175, 37-51.	2.6	17
105	An ATP-binding Cassette Transporter Is a Major Glycoprotein of Sea Urchin Sperm Membranes. Journal of Biological Chemistry, 2002, 277, 40729-40734.	3.4	16
106	Methylxanthines stimulate calcium transport and inhibit cyclic nucleotide phosphodiesterases in abalone sperm. Developmental Biology, 1983, 99, 115-120.	2.0	15
107	suREJ proteins: new signalling molecules in sea urchin spermatozoa. Zygote, 1999, 8, S28-S30.	1.1	15
108	Cloning of a sea urchin sarco/endoplasmic reticulum Ca2+ATPase. Biochemical and Biophysical Research Communications, 2006, 339, 443-449.	2.1	15

#	Article	IF	CITATIONS
109	Molecular characterization of a novel cell surface ADP-ribosyl cyclase from the sea urchin. Cellular Signalling, 2008, 20, 2347-2355.	3.6	15
110	The effects of glucose and lithium chloride on the appearance of β-1,3-glucanohydrolase activity in sand dollar plutei. Developmental Biology, 1971, 26, 11-16.	2.0	12
111	Egg jelly induces the phosphorylation of histone H3 in spermatozoa of the sea urchin Arbacia punctulata. Developmental Biology, 1989, 133, 111-118.	2.0	12
112	N-Linked Oligosaccharides of Sea Urchin Egg Jelly Induce the Sperm Acrosome Reaction. (fertilization/acrosome reaction/sea urchin/sperm/N-linked oligosaccharides). Development Growth and Differentiation, 1994, 36, 551-556.	1.5	12
113	Sequence, annotation and developmental expression of the sea urchin Ca2+-ATPase family. Gene, 2007, 397, 67-75.	2.2	12
114	Dephosphorylation of Sea Urchin Sperm Guanylate Cyclase During Fertilization. , 1986, 207, 359-382.		12
115	Dispersal of sperm surface antigens in the plasma membranes of polyspermically fertilized sea urchin eggs. Experimental Cell Research, 1987, 173, 628-632.	2.6	11
116	Isolation of Organelles and Components from Sea Urchin Eggs and Embryos. Methods in Cell Biology, 2004, 74, 491-522.	1.1	11
117	Diversity of olfactomedin proteins in the sea urchin. Genomics, 2007, 89, 721-730.	2.9	11
118	A Single Residue in a Novel ADP-ribosyl Cyclase Controls Production of the Calcium-mobilizing Messengers Cyclic ADP-ribose and Nicotinic Acid Adenine Dinucleotide Phosphate. Journal of Biological Chemistry, 2010, 285, 19900-19909.	3.4	11
119	Changing localizations of site-specific surface antigens during sea urchin spermiogenesis. Experimental Cell Research, 1987, 173, 606-616.	2.6	10
120	In vitro phosphorylation of sea urchin sperm adenylate cyclase by cyclic adenosine monophosphate-dependent protein kinase. Molecular Reproduction and Development, 1991, 28, 150-157.	2.0	10
121	Structural features and functional domains of amassin-1, a cell-binding olfactomedin protein. Biochemistry and Cell Biology, 2007, 85, 552-562.	2.0	10
122	Adenylate kinase in sea urchin embryonic cilia. Cytoskeleton, 2007, 64, 310-319.	4.4	10
123	SPERM-EGG BINDING EVENTS DURING SEA URCHIN FERTILIZATION. Annals of the New York Academy of Sciences, 1982, 383, 405-425.	3.8	9
124	Phorbol Myristate Acetate Induces the Phosphorylation of Plasma Membrane-Associated Proteins in Sea Urchin Eggs. (Protein phosphorylation/protein kinase C/egg activation). Development Growth and Differentiation, 1988, 30, 49-59.	1.5	9
125	Extraction of phosphorylated sperm specific histone H1 from sea urchin eggs: Analysis of phosphopeptide maps. Biochemical and Biophysical Research Communications, 1988, 151, 1200-1204.	2.1	9
126	Acrosomal Proteins of Abalone Spermatozoa. Advances in Developmental Biochemistry, 1999, , 49-81.	0.9	9

#	Article	IF	CITATIONS
127	Sea Urchin Gametes in the Teaching Laboratory: Good Experiments and Good Experiences. Methods in Cell Biology, 2004, 74, 797-823.	1.1	9
128	A sodium bicarbonate transporter from sea urchin spermatozoa. Gene, 2006, 375, 37-43.	2.2	8
129	Rapid immunoassays for the acrosome reaction of sea urchin sperm utilizing antibody to bindin. Experimental Cell Research, 1984, 153, 281-286.	2.6	7
130	The amino terminal sequence of sea urchin sperm histone H1 and its phosphorylation by egg cytosol. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 92, 381-384.	0.2	6
131	Ion channel activity of membrane vesicles released from sea urchin sperm during the acrosome reaction. Biochemical and Biophysical Research Communications, 2004, 321, 88-93.	2.1	6
132	The Adhesion of Sperm to Sea Urchin Eggs. , 1980, , 151-168.		6
133	Further studies on the glucose inhibition of β-1,3-glucanohydrolase increase during gut differentiation of sand dollar larvae. Developmental Biology, 1974, 36, 1-7.	2.0	5
134	Transport of Methionine in Sea-Urchin Sperm by a Neutral Amino-Acid Carrier. FEBS Journal, 1983, 133, 341-347.	0.2	5
135	Isolation of Sea Urchin Sperm Plasma Membranes. , 2004, 253, 141-150.		5
136	Gamete Interaction in the Sea Urchin A Model for Understanding the Molecular Details of Animal Fertilization. , 1981, , 199-232.		5
137	MACROMOLECULES MEDIATING SPERM-EGG RECOGNITION AND ADHESION DURING SEA URCHIN FERTILIZATION11Work supported by NIH Grant HD-08645. , 1978, , 379-389.		5
138	Biochemical Consequences of Ethidium Bromide Treatment of Sea Urchin Embryos. Nature, 1969, 224, 706-707.	27.8	4
139	Expression, purification, crystallization and preliminary X-ray analysis of the olfactomedin domain from the sea urchin cell-adhesion protein amassin. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 16-19.	0.7	4
140	Recombinant Sea Urchin Flagellar Adenylate Kinase. Journal of Biochemistry, 2007, 142, 501-506.	1.7	4
141	Sea urchin embryonic cilia. Methods in Cell Biology, 2019, 150, 235-250.	1.1	4
142	Lipid raft on gametic cells as a functional domain for sperm–egg interaction coupled with signal transduction. Zygote, 1999, 8, S63-S63.	1.1	3
143	A unique expression pattern for a sperm membrane protein during sea urchin spermatogenesis. Zygote, 1994, 2, 159-165.	1.1	2
144	My research career on (mainly) sea urchins. Methods in Cell Biology, 2019, 151, 21-26.	1.1	1

#	Article	IF	CITATIONS
145	New techniques for creating parthenogenetic larvae of the sea urchin <scp><i>Lytechinus pictus</i></scp> for gene expression studies. Developmental Dynamics, 2021, 250, 1828-1833.	1.8	1
146	A protein bridging the gap between sea urchin generations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2114056118.	7.1	1
147	NH4Cl and other weak bases in the activation of sea urchin eggs (reply). Nature, 1978, 274, 190-190.	27.8	0