Christopher Lipina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1113915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPR55 regulates the responsiveness to, but does not dimerise with, α1A-adrenoceptors. Biochemical Pharmacology, 2021, 188, 114560.	4.4	0
2	Wnt regulates amino acid transporter <i>Slc7a5</i> and so constrains the integrated stress response in mouse embryos. EMBO Reports, 2020, 21, e48469.	4.5	26
3	GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB Journal, 2019, 33, 1299-1312.	0.5	46
4	CDK7 is a component of the integrated stress response regulating SNAT2 (SLC38A2)/System A adaptation in response to cellular amino acid deprivation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 978-991.	4.1	6
5	Lipid modulation of skeletal muscle mass and function. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 190-201.	7.3	153
6	The endocannabinoid system: â€~NO' longer anonymous in the control of nitrergic signalling?. Journal of Molecular Cell Biology, 2017, 9, 91-103.	3.3	21
7	Is REDD1 a Metabolic Éminence Grise ?. Trends in Endocrinology and Metabolism, 2016, 27, 868-880.	7.1	42
8	Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biology, 2016, 6, 150276.	3.6	63
9	Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1. Cellular Signalling, 2016, 28, 412-424.	3.6	46
10	<scp>CB</scp> 1 receptor blockade counters ageâ€induced insulin resistance and metabolic dysfunction. Aging Cell, 2016, 15, 325-335.	6.7	28
11	Ganglioside GM3 as a gatekeeper of obesityâ€associated insulin resistance: Evidence and mechanisms. FEBS Letters, 2015, 589, 3221-3227.	2.8	47
12	NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cellular Signalling, 2015, 27, 1742-1750.	3.6	15
13	Enhanced Insulin Sensitivity Associated with Provision of Mono and Polyunsaturated Fatty Acids in Skeletal Muscle Cells Involves Counter Modulation of PP2A. PLoS ONE, 2014, 9, e92255.	2.5	24
14	Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cellular Signalling, 2014, 26, 2343-2349.	3.6	39
15	Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1-E13.	3.5	32
16	Characterising the Inhibitory Actions of Ceramide upon Insulin Signaling in Different Skeletal Muscle Cell Models: A Mechanistic Insight. PLoS ONE, 2014, 9, e101865.	2.5	44
17	Mitochondrial Substrate Availability and Its Role in Lipid-Induced Insulin Resistance and Proinflammatory Signaling in Skeletal Muscle. Diabetes, 2013, 62, 3426-3436.	0.6	21
18	Endocannabinoids in obesity: brewing up the perfect metabolic storm?. Environmental Sciences Europe, 2013, 2, 49-63.	5.5	4

#	Article	IF	CITATIONS
19	New vistas for treatment of obesity and diabetes? Endocannabinoid signalling and metabolism in the modulation of energy balance. BioEssays, 2012, 34, 681-691.	2.5	15
20	Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatinâ€deficient mice. FEBS Letters, 2010, 584, 2403-2408.	2.8	67
21	Regulation of MAP Kinase–Directed Mitogenic and Protein Kinase B–Mediated Signaling by Cannabinoid Receptor Type 1 in Skeletal Muscle Cells. Diabetes, 2010, 59, 375-385.	0.6	66
22	Targeting of PKCζ and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochemical Journal, 2008, 410, 369-379.	3.7	99