Louis Du Pasquier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11134318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Major Histocompatibility Complex (MHC) in Fish. , 2022, , 355-386.		3
2	The repertoire of vertebrate STAT transcription factors: Origin and variations in fish. Developmental and Comparative Immunology, 2021, 116, 103929.	2.3	11
3	Genome-Wide Association Analysis Identifies a Genetic Basis of Infectivity in a Model Bacterial Pathogen. Molecular Biology and Evolution, 2020, 37, 3439-3452.	8.9	20
4	Lymphoid Tissue in Teleost Gills: Variations on a Theme. Biology, 2020, 9, 127.	2.8	35
5	The Other Side of the Arms Race. , 2019, , 119-130.		0
6	The Triumph of Individualism: Evolution of Somatically Generated Adaptive Immune Systems. , 2019, , 71-117.		1
7	Evolutionary Concepts in Immunology. , 2019, , .		6
8	Molecular characterisation of immunological memory following homologous or heterologous challenges in the schistosomiasis vector snail, Biomphalaria glabrata. Developmental and Comparative Immunology, 2019, 92, 238-252.	2.3	22
9	Immunological memory: What's in a name?. Immunological Reviews, 2018, 283, 7-20.	6.0	78
10	Describing the diversity of Ag specific receptors in vertebrates: Contribution of repertoire deep sequencing. Developmental and Comparative Immunology, 2017, 75, 28-37.	2.3	32
11	Dscam1 in Pancrustacean Immunity: Current Status and a Look to the Future. Frontiers in Immunology, 2017, 8, 662.	4.8	30
12	The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model. PLoS Genetics, 2017, 13, e1006596.	3.5	51
13	A Population Biology Perspective on the Stepwise Infection Process of the Bacterial Pathogen Pasteuria ramosa inADaphnia. Advances in Parasitology, 2016, 91, 265-310.	3.2	70
14	Infections by Pasteuria do not protect its natural host Daphnia magna from subsequent infections. Developmental and Comparative Immunology, 2016, 57, 120-125.	2.3	7
15	A family of variable immunoglobulin and lectin domain containing molecules in the snail Biomphalaria glabrata. Developmental and Comparative Immunology, 2015, 48, 234-243.	2.3	85
16	Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods. Results and Problems in Cell Differentiation, 2015, 57, 131-158.	0.7	36
17	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	5.6	221
18	The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways. Journal of Immunology, 2014, 193, 2891-2901.	0.8	22

#	Article	IF	CITATIONS
19	No more non-model species: The promise of next generation sequencing for comparative immunology. Developmental and Comparative Immunology, 2014, 45, 56-66.	2.3	56
20	MORE THAN ONE WAY TO PRODUCE PROTEIN DIVERSITY: DUPLICATION AND LIMITED ALTERNATIVE SPLICING OF AN ADHESION MOLECULE GENE IN BASAL ARTHROPODS. Evolution; International Journal of Organic Evolution, 2013, 67, n/a-n/a.	2.3	25
21	Shark IgW C Region Diversification through RNA Processing and Isotype Switching. Journal of Immunology, 2013, 191, 3410-3418.	0.8	23
22	Origin of Immunoglobulin Isotype Switching. Current Biology, 2012, 22, 872-880.	3.9	49
23	Characterisation of a large family of polymorphic collagen-like proteins in the endospore-forming bacterium Pasteuria ramosa. Research in Microbiology, 2011, 162, 701-714.	2.1	27
24	Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish. PLoS ONE, 2011, 6, e22022.	2.5	100
25	Population Genetics of Duplicated Alternatively Spliced Exons of the Dscam Gene in Daphnia and Drosophila. PLoS ONE, 2011, 6, e27947.	2.5	25
26	Cloning of the unculturable parasite <i>Pasteuria ramosa</i> and its <i>Daphnia</i> host reveals extreme genotype–genotype interactions. Ecology Letters, 2011, 14, 125-131.	6.4	114
27	A Large Repertoire of Parasite Epitopes Matched by a Large Repertoire of Host Immune Receptors in an Invertebrate Host/Parasite Model. PLoS Neglected Tropical Diseases, 2010, 4, e813.	3.0	120
28	Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate. Science, 2010, 330, 1381-1385.	12.6	251
29	B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends in Immunology, 2010, 31, 144-153.	6.8	62
30	Complexity of expressed CHIR genes. Developmental and Comparative Immunology, 2010, 34, 866-873.	2.3	27
31	The fate of duplicated immunity genes in the dodecaploid Xenopus ruwenzoriensis. Frontiers in Bioscience - Landmark, 2009, Volume, 177.	3.0	16
32	CD96 Interaction with CD155 via Its First Ig-like Domain Is Modulated by Alternative Splicing or Mutations in Distal Ig-like Domains. Journal of Biological Chemistry, 2009, 284, 2235-2244.	3.4	66
33	Origin and evolution of the vertebrate leukocyte receptors: the lesson from tunicates. Immunogenetics, 2009, 61, 463-481.	2.4	29
34	Fish 'n' TRIMs. Journal of Biology, 2009, 8, 50.	2.7	14
35	Identification of a polymorphic collagen-like protein in the crustacean bacteria Pasteuria ramosa. Research in Microbiology, 2009, 160, 792-799.	2.1	28
36	The B7 family of immunoregulatory receptors: A comparative and evolutionary perspective. Molecular Immunology, 2009, 46, 457-472.	2.2	99

#	Article	IF	CITATIONS
37	Immunoreceptor tyrosineâ€based inhibition motifs: a quest in the past and future. Immunological Reviews, 2008, 224, 11-43.	6.0	315
38	ciCD94-1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures. Differentiation, 2008, 76, 267-282.	1.9	26
39	Transgenesis procedures in <i>Xenopus</i> . Biology of the Cell, 2008, 100, 503-529.	2.0	48
40	New perspectives for large-scale repertoire analysis of immune receptors. Molecular Immunology, 2008, 45, 2437-2445.	2.2	32
41	The Dscam Homologue of the Crustacean Daphnia Is Diversified by Alternative Splicing Like in Insects. Molecular Biology and Evolution, 2008, 25, 1429-1439.	8.9	145
42	The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11718-11723.	7.1	85
43	Costimulatory receptors in jawed vertebrates: Conserved CD28, odd CTLA4 and multiple BTLAs. Developmental and Comparative Immunology, 2007, 31, 255-271.	2.3	79
44	Specific Immune Response. NeuroImmune Biology, 2007, , 101-126.	0.2	0
45	Channel catfish leukocyte immune-type receptors contain a putative MHC class I binding site. Immunogenetics, 2007, 59, 77-91.	2.4	47
46	Germline and somatic diversification of immune recognition elements in Metazoa. Immunology Letters, 2006, 104, 2-17.	2.5	56
47	A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex. Immunogenetics, 2006, 58, 758-773.	2.4	61
48	The Chicken Leukocyte Receptor Complex: A Highly Diverse Multigene Family Encoding at Least Six Structurally Distinct Receptor Types. Journal of Immunology, 2005, 175, 385-393.	0.8	88
49	IMMUNOLOGY: Insects Diversify One Molecule to Serve Two Systems. Science, 2005, 309, 1826-1827.	12.6	43
50	Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunological Reviews, 2004, 198, 233-248.	6.0	104
51	An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nature Immunology, 2004, 5, 1275-1281.	14.5	150
52	Speculations on the origin of the vertebrate immune system. Immunology Letters, 2004, 92, 3-9.	2.5	45
53	Innate immunity in early chordates and the appearance of adaptive immunity. Comptes Rendus - Biologies, 2004, 327, 591-591.	0.2	0
54	Innate immunity in early chordates and the appearance of adaptive immunity. Comptes Rendus - Biologies, 2004, 327, 591-601.	0.2	42

#	Article	IF	CITATIONS
55	On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends in Immunology, 2004, 25, 105-111.	6.8	125
56	Evolution of innate and adaptive immunity: can we draw a line?. Trends in Immunology, 2004, 25, 640-644.	6.8	230
57	Endothelial adhesion molecule ESAM binds directly to the multidomain adaptor MAGI-1 and recruits it to cell contacts. Experimental Cell Research, 2004, 300, 121-133.	2.6	81
58	Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: "waiting for Godot― Immunogenetics, 2003, 55, 570-581.	2.4	278
59	Two highly divergent ancient allelic lineages of the transporter associated with antigen processing(TAP) gene inXenopus: further evidence for co-evolution among MHC class I region genes. European Journal of Immunology, 2003, 33, 3017-3027.	2.9	42
60	Workshop report: evolutionary immunobiology—new approaches, new paradigms. Developmental and Comparative Immunology, 2003, 27, 263-271.	2.3	7
61	A humanTAPBP (TAPASIN)-related gene,TAPBP-R. European Journal of Immunology, 2002, 32, 1059-1068.	2.9	51
62	Correction Vol. 32(6) 2002, pp 1593-1604 The fate of duplicated major histocompatibility complex class Ia genes in a dodecaploid amphibian, Xenopus ruwenzoriensis. European Journal of Immunology, 2002, 32, 2698-2709.	2.9	18
63	The immune system of invertebrates and vertebrates. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 129, 1-15.	1.6	121
64	Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood, 2001, 98, 3699-3707.	1.4	244
65	B-cell development in the amphibianXenopus. Immunological Reviews, 2000, 175, 201-213.	6.0	97
66	Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus. Immunogenetics, 2000, 51, 186-192.	2.4	28
67	Charley Steinberg 1932-1999. Immunogenetics, 2000, 51, 395-397.	2.4	2
68	Relationships among the genes encoding MHC molecules and the specific antigen receptors. , 2000, , 53-65.		4
69	B-cell development in the amphibian Xenopus. Immunological Reviews, 2000, 175, 201-213.	6.0	7
70	Duplication and MHC linkage of the CTX family of genes inXenopus and in mammals. European Journal of Immunology, 1999, 29, 1729-1739.	2.9	18
71	Axolotl MHC architecture and polymorphism. European Journal of Immunology, 1999, 29, 2897-2907.	2.9	51
72	Development of the early B cell population inXenopus. European Journal of Immunology, 1998, 28, 2947-2959.	2.9	33

#	Article	IF	CITATIONS
73	CTX, aXenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. European Journal of Immunology, 1998, 28, 4094-4104.	2.9	114
74	CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. European Journal of Immunology, 1998, 28, 4094-4104.	2.9	8
75	Antibody Cross-Linking of the Thymocyte-Specific Cell Surface Molecule CTX Causes Abnormal Mitosis and Multinucleation of Tumor Cells. Experimental Cell Research, 1997, 235, 227-237.	2.6	10
76	Cross-linking CTX, a novel thymocyte-specific molecule, inhibits the growth of lymphoid tumor cells in xenopus. Molecular Immunology, 1997, 34, 133-143.	2.2	16
77	Sequence and Expression of an Eisenia-Fetida-Derived cDNA Clone That Encodes the 40-kDa Fetidin Antibacterial Protein. FEBS Journal, 1997, 246, 756-762.	0.2	62
78	The T cell receptor β genes ofXenopus. European Journal of Immunology, 1997, 27, 763-771.	2.9	53
79	Microsites for immunoglobulin switch recombination breakpoints fromXenopus to mammals. European Journal of Immunology, 1997, 27, 2610-2619.	2.9	87
80	Conservation of a master hematopoietic switch gene during vertebrate evolution: Isolation and characterization ofIkaros from teleost and amphibian species. European Journal of Immunology, 1997, 27, 3049-3058.	2.9	54
81	Effects of thymectomy and tolerance induction on tumor immunity in adultXenopus laevis. , 1997, 70, 330-334.		23
82	Conservation of an alpha 2 domain within the teleostean world, mhc class i from the rainbow trout Oncorhynchus mykiss. Developmental and Comparative Immunology, 1996, 20, 417-425.	2.3	73
83	RING3 is linked to the Xenopus major histocompatibility complex. Immunogenetics, 1996, 44, 397-399.	2.4	6
84	RING3 is linked to theXenopus major histocompatibility complex. Immunogenetics, 1996, 44, 397-399.	2.4	13
85	Membrane exon sequences of the threeXenopus Ig classes explain the evolutionary origin of mammalian isotypes. European Journal of Immunology, 1996, 26, 409-414.	2.9	50
86	CTX, a novel molecule specifically expressed on the surface of cortical thymocytes inXenopus. European Journal of Immunology, 1996, 26, 780-791.	2.9	64
87	IsXenopus IgX an analog of IgA?. European Journal of Immunology, 1996, 26, 2823-2830.	2.9	111
88	Xenopus lymphoid tumor cell lines. , 1996, , 2367-2377.		1
89	A ploidy marker to track lymphocytes after cells transfer between genetically identical or inbred Xenopus. , 1996, , 2379-2394.		0
90	Ontogeny of the alloimmune response against a transplanted tumor in Xenopus laevis. Differentiation, 1995, 59, 135-144.	1.9	50

6

#	Article	IF	CITATIONS
91	The third component ofXenopus complement: cDNA cloning, structural and functional analysis, and evidence for an alternate C3 transcript. European Journal of Immunology, 1995, 25, 572-578.	2.9	29
92	Exon-intron organization of Xenopus MHC class II \hat{I}^2 chain genes. Immunogenetics, 1995, 42, 376-385.	2.4	23
93	Somatic Mutations During an Immune Response inXenopusTadpoles. Autoimmunity, 1995, 4, 227-234.	0.6	20
94	A Xenopus lymphoid tumor cell line with complete Ig genes rearrangements and T-cell characteristics. Molecular Immunology, 1995, 32, 583-593.	2.2	17
95	Lymphoid Tumors of <i>Xenopus laevis</i> with Different Capacities for Growth in Larvae and Adults. Autoimmunity, 1994, 3, 297-307.	0.6	59
96	Diversity of expressed V and J regions of immunoglobulin light chains in Xenopus laevis. European Journal of Immunology, 1993, 23, 1980-1986.	2.9	12
97	Phylogeny of B-cell development. Current Opinion in Immunology, 1993, 5, 185-193.	5.5	66
98	In Vitro Growth of Thymic Tumor Cell Lines from Xenopus. Autoimmunity, 1992, 2, 295-307.	0.6	42
99	Changes in the Amphibian Antibody Repertoire are Correlated With Metamorphosis and not With Age or Size. Autoimmunity, 1992, 2, 1-6.	0.6	21
100	Sequences of Cμ and the VH1 Family in LG7, a Clonable Strain of Xenopus, Homozygous for the Immunoglobulin Loci. Autoimmunity, 1992, 3, 13-24.	0.6	12
101	Origin and evolution of the vertebrate immune system. Apmis, 1992, 100, 383-392.	2.0	28
102	Light chain heterogeneity in the amphibian Xenopus. Molecular Immunology, 1991, 28, 985-994.	2.2	48
103	Differential expression of creatine kinase isozymes during development of Xenopus laevis: An unusual heterodimeric isozyme appears at metamorphosis. Differentiation, 1991, 46, 23-34.	1.9	9
104	Reagents Specific for MHC Class I Antigens of Xenopus. American Zoologist, 1991, 31, 580-591.	0.7	27
105	The Major Histocompatibility Complex of Frogs. Immunological Reviews, 1990, 113, 47-63.	6.0	56
106	Expression of MHC Class II Antigens During Xenopus Development. Autoimmunity, 1990, 1, 85-95.	0.6	104
107	Evolution of the MHC: Antigenicity and unusual tissue distribution of Xenopus (frog) class II molecules. Molecular Immunology, 1990, 27, 451-462.	2.2	55

108 Tonegawa's prize. Nature, 1988, 331, 108-108.

27.8 0

4

#	Article	IF	CITATIONS
109	MHC class I antigens as surface markers of adult erythrocytes during the metamorphosis of Xenopus. Developmental Biology, 1988, 128, 198-206.	2.0	59
110	Changes in the immune system during metamorphosis of Xenopus. Trends in Immunology, 1987, 8, 58-64.	7.5	116
111	Genetics of polyploid Xenopus. Trends in Genetics, 1986, 2, 310-315.	6.7	248
112	Ontogeny of the Immune System in Anuran Amphibians. , 1986, , 1079-1088.		3
113	Immune responses of thymusf/ymphocyte embryonic chimeras: studies on tolerance and major histocompatibility complex restriction inXenopus. European Journal of Immunology, 1985, 15, 540-547.	2.9	87
114	Methods Used to Study the Immune System of Xenopus (Amphibia, Anura). , 1985, , 425-465.		16
115	Studies on the Xenopus major histocompatibility complex. Developmental and Comparative Immunology, 1985, 9, 777-781.	2.3	13
116	Phylogeny of MHC Class I and Class II Molecules Identified by Cross-Reactive Xenoantisera. , 1985, , 51-59.		0
117	Ontogeny of the immune system in Xenopus. Differentiation, 1984, 28, 109-115.	1.9	41
118	Ontogeny of the immune system in Xenopus. Differentiation, 1984, 28, 116-122.	1.9	38
119	Identification of class I major histocompatibility complex encoded molecules in the amphibian Xenopus. Immunogenetics, 1984, 20, 433-442.	2.4	66
120	Structural and functional analysis of spontaneous anti-nitrophenyl antibodies in three cyprinid fish species: Carp (Cyrinuscarpio), goldfish (Carassiusauratus) and tench (Tincatinca). Developmental and Comparative Immunology, 1984, 8, 611-622.	2.3	54
121	Studies on Xenopus immunoglobulins using monoclonal antibodies. Molecular Immunology, 1984, 21, 257-270.	2.2	81
122	Immunoglobulin expression in diploid and polyploid interspecies hybrids ofXenopus: evidence for allelic exclusion. European Journal of Immunology, 1983, 13, 585-590.	2.9	20
123	Restoration of antibody responsiveness in early thymectomizedXenopus by implantation of major histocompatibility complex-mismatched larval thymus. European Journal of Immunology, 1982, 12, 546-551.	2.9	16
124	The expression of antibody diversity in natural and laboratory-made polyploid individuals of the clawed toad Xenopus. Immunogenetics, 1982, 15, 251-260.	2.4	25
125	Antibody diversity in lower vertebrates—why is it so restricted?. Nature, 1982, 296, 311-313.	27.8	152

126 Ontogeny of Immunological Functions in Amphibians. , 1982, , 633-657.

#	Article	IF	CITATIONS
127	Le Ti¿½tard et l�Anticorps. , 1981, 1, 62-68.		1
128	Genetic control of T helper cell function in the clawed toadXenopus laevis. European Journal of Immunology, 1981, 11, 151-155.	2.9	46
129	Antibody diversity in amphibians: evidence for the inheritance of idiotypic specificities in isogenicXenopus. European Journal of Immunology, 1980, 10, 731-736.	2.9	31
130	In vitro evidence for T-B lymphocyte collaboration in the clawed toad,Xenopus. European Journal of Immunology, 1980, 10, 869-876.	2.9	53
131	Ontogeny of immunity in amphibians: Changes in antibody repertoires and appearance of adult major histocompatibility antigens inXenopus. European Journal of Immunology, 1979, 9, 900-906.	2.9	78
132	Hyperdiploid species hybrids for gene mapping in Xenopus. Nature, 1979, 279, 157-158.	27.8	25
133	Histocompatibility antigens and immunoglobulin genes in the clawed toad: Espression and linkage studies in recombinant and hyperdiploidxenopus hybrids. Immunogenetics, 1979, 8, 299-310.	2.4	20
134	Immunogenetic studies on the cell-mediated cytotoxicity in the clawed toadXenopus laevis. Immunogenetics, 1979, 9, 443-454.	2.4	40
135	Genetic aspects of the tolerance to allografts induced at metamorphosis in the toadXenopus laevis. Immunogenetics, 1975, 2, 431-440.	2.4	54
136	Factors affecting the reactivity of amphibian lymphocytes in a miniaturized technique of the mixed lymphocyte culture. Journal of Immunological Methods, 1973, 3, 273-285.	1.4	29