
## Valeria Militello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11134139/publications.pdf Version: 2024-02-01



VALEDIA MILITELLO

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Application of FTIR Spectroscopy to Analyze RNA Structure. Methods in Molecular Biology, 2020, 2113, 119-133.                                                                          | 0.9  | 19        |
| 2  | In Situ Characterization of Hfq Bacterial Amyloid: A Fourier-Transform Infrared Spectroscopy Study.<br>Pathogens, 2019, 8, 36.                                                         | 2.8  | 21        |
| 3  | Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro. Methods in Molecular Biology,<br>2018, 1737, 321-340.                                                              | 0.9  | 4         |
| 4  | Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature. Archives of Biochemistry and Biophysics, 2017, 627, 46-55. | 3.0  | 11        |
| 5  | High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy.<br>Biophysical Journal, 2017, 113, 1685-1696.                                        | 0.5  | 16        |
| 6  | Data concerning the proteolytic resistance and oxidative stress in LAN5 cells after treatment with BSA hydrogels. Data in Brief, 2016, 9, 324-327.                                     | 1.0  | 4         |
| 7  | Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold. Archives of Biochemistry and Biophysics, 2016, 606, 134-142.                  | 3.0  | 41        |
| 8  | lonizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer's disease. Biomaterials, 2016, 80, 179-194.        | 11.4 | 91        |
| 9  | Decoding vibrational states of Concanavalin A amyloid fibrils. Biophysical Chemistry, 2015, 199, 17-24.                                                                                | 2.8  | 25        |
| 10 | Thioflavin T templates amyloid β(1–40) conformation and aggregation pathway. Biophysical Chemistry, 2015, 206, 1-11.                                                                   | 2.8  | 35        |
| 11 | New insight into the structure and function of Hfq C-terminus. Bioscience Reports, 2015, 35, .                                                                                         | 2.4  | 55        |
| 12 | Development of a Biosensor for Copper Detection in Aqueous Solutions Using an Anemonia sulcata<br>Recombinant GFP. Applied Biochemistry and Biotechnology, 2014, 172, 2175-2187.       | 2.9  | 5         |
| 13 | Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochimica<br>Et Biophysica Acta - General Subjects, 2014, 1840, 1712-1724.                    | 2.4  | 17        |
| 14 | Metal ions modulate thermal aggregation of beta-lactoglobulin: A joint chemical and physical characterization. Journal of Inorganic Biochemistry, 2014, 137, 64-73.                    | 3.5  | 28        |
| 15 | Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation. PLoS ONE, 2014, 9, e84552.                                                | 2.5  | 61        |
| 16 | High Fluorescence of Thioflavin T Confined in Mesoporous Silica Xerogels. Langmuir, 2013, 29,<br>10238-10246.                                                                          | 3.5  | 21        |
| 17 | Characterization of the nucleation process of lysozyme at physiological pH: Primary but not sole process. Biophysical Chemistry, 2013, 177-178, 24-33.                                 | 2.8  | 17        |
| 18 | Neutron Scattering Reveals Enhanced Protein Dynamics in Concanavalin A Amyloid Fibrils. Journal of<br>Physical Chemistry Letters, 2012, 3, 992-996.                                    | 4.6  | 20        |

VALERIA MILITELLO

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thioflavin T Promotes Aβ(1–40) Amyloid Fibrils Formation. Journal of Physical Chemistry Letters, 2012, 3,<br>1596-1601.                                                       | 4.6 | 79        |
| 20 | Bovine Serum Albumin protofibril-like aggregates formation: Solo but not simple mechanism. Archives of Biochemistry and Biophysics, 2011, 508, 13-24.                         | 3.0 | 84        |
| 21 | Insulinâ€∎ctivated Akt rescues Aβ oxidative stressâ€induced cell death by orchestrating molecular<br>trafficking. Aging Cell, 2011, 10, 832-843.                              | 6.7 | 64        |
| 22 | Irreversible gelation of thermally unfolded proteins: structural and mechanical properties of lysozyme aggregates. European Biophysics Journal, 2010, 39, 1007-1017.          | 2.2 | 20        |
| 23 | Concanavalin A aggregation and toxicity on cell cultures. Biochimica Et Biophysica Acta - Proteins and<br>Proteomics, 2010, 1804, 173-183.                                    | 2.3 | 31        |
| 24 | Thermal aggregation of glycated bovine serum albumin. Biochimica Et Biophysica Acta - Proteins and<br>Proteomics, 2010, 1804, 789-798.                                        | 2.3 | 106       |
| 25 | Thermal aggregation and ion-induced cold-gelation of bovine serum albumin. European Biophysics<br>Journal, 2009, 38, 437-446.                                                 | 2.2 | 53        |
| 26 | Influence of metal ions on thermal aggregation of bovine serum albumin: Aggregation kinetics and structural changes. Journal of Inorganic Biochemistry, 2009, 103, 1729-1738. | 3.5 | 50        |
| 27 | Amyloid fibrils formation and amorphous aggregation in concanavalin A. Biophysical Chemistry, 2007, 125, 184-190.                                                             | 2.8 | 130       |
| 28 | Thermal aggregation of β-lactoglobulin in presence of metal ions. Biophysical Chemistry, 2007, 131, 52-61.                                                                    | 2.8 | 40        |
| 29 | Effects of succinylation on thermal induced amyloid formation in Concanavalin A. European<br>Biophysics Journal, 2007, 36, 733-741.                                           | 2.2 | 24        |
| 30 | Thermal aggregation of bovine serum albumin at different pH: comparison with human serum albumin.<br>European Biophysics Journal, 2007, 36, 717-725.                          | 2.2 | 97        |
| 31 | Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin. Biophysical Chemistry, 2005, 113, 83-91.                                   | 2.8 | 94        |
| 32 | Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering.<br>Biophysical Chemistry, 2004, 107, 175-187.                                 | 2.8 | 266       |
| 33 | Conformational substates and dynamic properties of carbonmonoxy hemoglobin. Biophysical<br>Chemistry, 2003, 104, 335-344.                                                     | 2.8 | 12        |
| 34 | Conformational changes involved in thermal aggregation processes of bovine serum albumin.<br>Biophysical Chemistry, 2003, 105, 133-141.                                       | 2.8 | 160       |
| 35 | Heme Pocket Disorder in Myoglobin: Reversal by Acid-Induced Soft Refoldingâ€. Biochemistry, 2001, 40,<br>11841-11850.                                                         | 2.5 | 8         |
| 36 | Properties of Human Hemoglobins with Increased Polarity in the α- or β-Heme Pocket. Journal of<br>Biological Chemistry, 1998, 273, 23740-23749.                               | 3.4 | 20        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Modification of α-Chain or β-Chain Heme Pocket Polarity by Val(E11) → Thr Substitution Has Different<br>Effects on the Steric, Dynamic, and Functional Properties of Human Recombinant Hemoglobin. Journal<br>of Biological Chemistry, 1997, 272, 26271-26278. | 3.4 | 12        |
| 38 | Thermal broadening of the Soret band in heme complexes and in heme-proteins: role of iron dynamics.<br>European Biophysics Journal, 1994, 23, 349-52.                                                                                                          | 2.2 | 28        |