
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11131619/publications.pdf Version: 2024-02-01

ΜΙΙΙΙ ΗΛΙΕΤΕΡ

#	Article	IF	CITATIONS
1	Organ-specific ECM arrays for investigating cell-ECM interactions during stem cell differentiation. Biofabrication, 2021, 13, 015015.	7.1	4
2	The human Descemet's membrane and lens capsule: Protein composition and biomechanical properties. Experimental Eye Research, 2020, 201, 108326.	2.6	17
3	Diabetes-related changes in the protein composition and the biomechanical properties of human retinal vascular basement membranes. PLoS ONE, 2017, 12, e0189857.	2.5	17
4	Superior Rim Stability of the Lens Capsule Following Manual Over Femtosecond Laser Capsulotomy. , 2016, 57, 2839.		35
5	Tenascin-C Is Associated with Cored Amyloid-β Plaques in Alzheimer Disease and Pathology Burdened Cognitively Normal Elderly. Journal of Neuropathology and Experimental Neurology, 2016, 75, 868-876.	1.7	31
6	New concepts in basement membrane biology. FEBS Journal, 2015, 282, 4466-4479.	4.7	121
7	An organizing function of basement membranes in the developing nervous system. Mechanisms of Development, 2014, 133, 1-10.	1.7	11
8	II.E. Vitreoretinal Interface and Inner Limiting Membrane. , 2014, , 165-191.		25
9	Proteomic View of Basement Membranes from Human Retinal Blood Vessels, Inner Limiting Membranes, and Lens Capsules. Journal of Proteome Research, 2014, 13, 3693-3705.	3.7	49
10	Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials, 2013, 34, 6760-6772.	11.4	242
11	Diabetes-induced morphological, biomechanical, and compositional changes in ocular basement membranes. Experimental Eye Research, 2013, 116, 298-307.	2.6	55
12	Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adhesion and Migration, 2013, 7, 64-71.	2.7	77
13	The Bi-Functional Organization of Human Basement Membranes. PLoS ONE, 2013, 8, e67660.	2.5	50
14	Nanoscale Topographic and Biomechanical Studies of the Human Internal Limiting Membrane. , 2012, 53, 2561.		77
15	Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biology, 2010, 29, 402-410.	3.6	151
16	Molecular interactions in the retinal basement membrane system: A proteomic approach. Matrix Biology, 2010, 29, 471-483.	3.6	50
17	Retinal ectopias and mechanically weakened basement membrane in a mouse model of muscle-eye-brain (MEB) disease congenital muscular dystrophy. Molecular Vision, 2010, 16, 1415-28.	1.1	27
18	3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging. Experimental Eye Research, 2009, 89, 511-521.	2.6	23

#	Article	IF	CITATIONS
19	Change in Embryonic Eye Size and Retinal Cell Proliferation following Intravitreal Injection of Glycosaminoglycans. , 2008, 49, 3289.		5
20	Agrin is required for posterior development and motor axon outgrowth and branching in embryonic zebrafish. Glycobiology, 2007, 17, 231-247.	2.5	39
21	β1-Integrin Signaling is Essential for Lens Fiber Survival. Gene Regulation and Systems Biology, 2007, 1, 117762500700100.	2.3	1
22	Biomechanical properties of native basement membranes. FEBS Journal, 2007, 274, 2897-2908.	4.7	173
23	Beta1-integrin signaling is essential for lens fiber survival. Gene Regulation and Systems Biology, 2007, 1, 177-89.	2.3	12
24	Regulation of Eye Size by the Retinal Basement Membrane and Vitreous Body. , 2006, 47, 3586.		51
25	Embryonic Synthesis of the Inner Limiting Membrane and Vitreous Body. , 2005, 46, 2202.		61
26	Opticin Binds to Heparan and Chondroitin Sulfate Proteoglycans. , 2005, 46, 4417.		47
27	Basement Membrane–Dependent Survival of Retinal Ganglion Cells. , 2005, 46, 1000.		70
28	Adaptation of Sensory Neurons to Hyalectin and Decorin Proteoglycans. Journal of Neuroscience, 2005, 25, 4964-4973.	3.6	22
29	Agrin binds α-synuclein and modulates α-synuclein fibrillation. Glycobiology, 2005, 15, 1320-1331.	2.5	65
30	Extracellular Matrices of the Avian Ovarian Follicle. Journal of Biological Chemistry, 2004, 279, 23486-23494.	3.4	26
31	Glycosaminoglycan-dependent and -independent inhibition of neurite outgrowth by agrin. Journal of Neurochemistry, 2004, 90, 50-61.	3.9	19
32	Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO Journal, 2004, 23, 89-99.	7.8	114
33	Perlecan and its immunoglobulin like domain IV are abundant in vitreous and serum of the chick embryo. Matrix Biology, 2004, 23, 143-152.	3.6	11
34	The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. Journal of Neurobiology, 2003, 55, 261-277.	3.6	68
35	Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). EMBO Journal, 2003, 22, 529-536.	7.8	36
36	Agrin Is a Chimeric Proteoglycan with the Attachment Sites for Heparan Sulfate/Chondroitin Sulfate Located in Two Multiple Serine-Glycine Clusters. Journal of Biological Chemistry, 2003, 278, 30106-30114.	3.4	53

#	Article	IF	CITATIONS
37	Expression of Collagen XVIII and Localization of Its Glycosaminoglycan Attachment Sites. Journal of Biological Chemistry, 2003, 278, 1700-1707.	3.4	60
38	Heparan Sulfate Proteoglycans Are Ligands for Receptor Protein Tyrosine Phosphatase σ. Molecular and Cellular Biology, 2002, 22, 1881-1892.	2.3	192
39	A Critical Function of the Pial Basement Membrane in Cortical Histogenesis. Journal of Neuroscience, 2002, 22, 6029-6040.	3.6	261
40	Expression of basal lamina protein mRNAs in the early embryonic chick eye. Journal of Comparative Neurology, 2002, 447, 261-273.	1.6	36
41	Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development (Cambridge), 2002, 129, 2711-2722.	2.5	166
42	Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development (Cambridge), 2002, 129, 2711-22.	2.5	67
43	Temporary Disruption of the Retinal Basal Lamina and Its Effect on Retinal Histogenesis. Developmental Biology, 2001, 238, 79-96.	2.0	41
44	Agrin Binds to β-Amyloid (Aβ), Accelerates Aβ Fibril Formation, and Is Localized to Aβ Deposits in Alzheimer's Disease Brain. Molecular and Cellular Neurosciences, 2000, 15, 183-198.	2.2	158
45	Identification of Extracellular Matrix Ligands for the Heparan Sulfate Proteoglycan Agrin. Experimental Cell Research, 1999, 249, 54-64.	2.6	82
46	Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum. , 1998, 397, 105-117.		18
47	Disruption of the retinal basal lamina during early embryonic development leads to a retraction of vitreal end feet, an increased number of ganglion cells, and aberrant axonal outgrowth. , 1998, 397, 89-104.		44
48	Collagen XVIII Is a Basement Membrane Heparan Sulfate Proteoglycan. Journal of Biological Chemistry, 1998, 273, 25404-25412.	3.4	296
49	A Role of Midkine in the Development of the Neuromuscular Junction. Molecular and Cellular Neurosciences, 1997, 10, 56-70.	2.2	52
50	Intraretinal Grafting Reveals Growth Requirements and Guidance Cues for Optic Axons in the Developing Avian Retina. Developmental Biology, 1996, 177, 160-177.	2.0	22
51	The Behavior of Optic Axons on Substrate Gradients of Retinal Basal Lamina Proteins and Merosin. Journal of Neuroscience, 1996, 16, 4389-4401.	3.6	54
52	Agrin Is a Heparan Sulfate Proteoglycan. Journal of Biological Chemistry, 1995, 270, 3392-3399.	3.4	249
53	Identification of a Novel Alternatively Spliced Agrin mRNA That Is Preferentially Expressed in Non-neuronal Cells. Journal of Biological Chemistry, 1995, 270, 15934-15937.	3.4	45
54	Axonin 1 is expressed primarily in subclasses of avian sensory neurons during outgrowth. Developmental Brain Research, 1994, 78, 87-101.	1.7	38

#	Article	IF	CITATIONS
55	A New Heparan Sulfate Proteoglycan in the Extracellular Matrix of the Developing Chick Embryo. Experimental Cell Research, 1994, 214, 285-296.	2.6	18
56	Effect of wound healing and tissue transplantation on the navigation of axons in organ-cultured embryonic chick eyes. Journal of Comparative Neurology, 1993, 327, 442-457.	1.6	3
57	Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development. Journal of Comparative Neurology, 1988, 268, 161-170.	1.6	11
58	Anterograde tracing of retinal axons in the avian embryo with low molecular weight derivatives of biotin. Developmental Biology, 1987, 119, 322-335.	2.0	29
59	Immunohistochemical localization of laminin, neural cell adhesion molecule, collagen type IV and T-61 antigen in the embryonic retina of the Japanese quail by in vivo injection of antibodies. Cell and Tissue Research, 1987, 249, 487-96.	2.9	50
60	Axonal pathfinding in organ-cultured embryonic avian retinae. Developmental Biology, 1986, 114, 296-310.	2.0	41
61	Inhibition of cell proliferation by cytosin-arabinoside and its interference with spatial and temporal differentiation patterns in the chick retina. Cell and Tissue Research, 1986, 244, 501-13.	2.9	17
62	The formation of the axonal pattern in the embryonic avian retina. Journal of Comparative Neurology, 1985, 232, 466-480.	1.6	79
63	Axon growth in embryonic chick and quail retinal whole mounts in vitro. Developmental Biology, 1984, 102, 344-355.	2.0	66
64	Interactions of Axons with their Environment: The Chick Retino-Tectal System as a Model. , 1984, , 343-360.		0
65	Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites. Nature, 1981, 292, 67-70.	27.8	84