Ehud Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11130099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retrospective cell lineage reconstruction in humans by using short tandem repeats. Cell Reports Methods, 2021, 1, 100054.	2.9	9
2	Comparison of seven single cell whole genome amplification commercial kits using targeted sequencing. Scientific Reports, 2021, 11, 17171.	3.3	19
3	Benchmarked approaches for reconstruction of inÂvitro cell lineages and in silico models of C. elegans and M. musculus developmental trees. Cell Systems, 2021, 12, 810-826.e4.	6.2	36
4	Efficient acquisition of tens of thousands of short tandem repeats in single-cell whole-genome-amplified DNA. STAR Protocols, 2021, 2, 100828.	1.2	0
5	Short tandem repeat stutter model inferred from direct measurement of in vitro stutter noise. Nucleic Acids Research, 2019, 47, 2436-2445.	14.5	15
6	On the journey from nematode to human, scientists dive by the zebrafish cell lineage tree. Genome Biology, 2018, 19, 63.	8.8	2
7	The Human Cell Atlas. ELife, 2017, 6, .	6.0	1,547
8	A generic, cost-effective, and scalable cell lineage analysis platform. Genome Research, 2016, 26, 1588-1599.	5.5	34
9	eSTGt: a programming and simulation environment for population dynamics. BMC Bioinformatics, 2016, 17, 187.	2.6	4
10	Synthesis and cell-free cloning of DNA libraries using programmable microfluidics. Nucleic Acids Research, 2016, 44, e35-e35.	14.5	23
11	Accuracy of Answers to Cell Lineage Questions Depends on Single-Cell Genomics Data Quality and Quantity. PLoS Computational Biology, 2016, 12, e1004983.	3.2	5
12	Rationally designed, heterologous <i>S. cerevisiae</i> transcripts expose novel expression determinants. RNA Biology, 2015, 12, 972-984.	3.1	39
13	Accurate, Model-Based Tuning of Synthetic Gene Expression Using Introns in S. cerevisiae. PLoS Genetics, 2014, 10, e1004407.	3.5	31
14	Lineage grammars: describing, simulating and analyzing population dynamics. BMC Bioinformatics, 2014, 15, 249.	2.6	5
15	Single cell analysis exposes intratumor heterogeneity and suggests that FLT3-ITD is a late event in leukemogenesis. Experimental Hematology, 2014, 42, 457-463.	0.4	22
16	Heuristic for Maximizing DNA Reuse in Synthetic DNA Library Assembly. ACS Synthetic Biology, 2014, 3, 529-542.	3.8	16
17	Correcting the bias against interdisciplinary research. ELife, 2014, 3, e02576.	6.0	2
18	Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics, 2013, 14, 618-630.	16.3	1,012

#	Article	lF	CITATIONS
19	Molecules reach consensus. Nature Nanotechnology, 2013, 8, 703-705.	31.5	14
20	A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnology for Biofuels, 2013, 6, 182.	6.2	76
21	Mapping the translation initiation landscape of an S. cerevisiae gene using fluorescent proteins. Genomics, 2013, 102, 419-429.	2.9	9
22	A library of programmable DNAzymes that operate in a cellular environment. Scientific Reports, 2013, 3, 1535.	3.3	51
23	Comparing Algorithms That Reconstruct Cell Lineage Trees Utilizing Information on Microsatellite Mutations. PLoS Computational Biology, 2013, 9, e1003297.	3.2	16
24	Cell Lineage Analysis of the Mammalian Female Germline. PLoS Genetics, 2012, 8, e1002477.	3.5	60
25	A mechanical Turing machine: blueprint for a biomolecular computer. Interface Focus, 2012, 2, 497-503.	3.0	22
26	Programmable In Vivo Selection of Arbitrary DNA Sequences. PLoS ONE, 2012, 7, e47795.	2.5	1
27	Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. Blood, 2012, 120, 603-612.	1.4	67
28	De Novo DNA Synthesis Using Single-Molecule PCR. Methods in Molecular Biology, 2012, 852, 35-47.	0.9	1
29	Detection of Multiple Disease Indicators by an Autonomous Biomolecular Computer. Nano Letters, 2011, 11, 2989-2996.	9.1	42
30	Muscle-Bound Primordial Stem Cells Give Rise to Myofiber-Associated Myogenic and Non-Myogenic Progenitors. PLoS ONE, 2011, 6, e25605.	2.5	9
31	Colon Stem Cell and Crypt Dynamics Exposed by Cell Lineage Reconstruction. PLoS Genetics, 2011, 7, e1002192.	3.5	52
32	Processing DNA molecules as text. Systems and Synthetic Biology, 2010, 4, 227-236.	1.0	15
33	Single-Cell Phylogenetic analysis provides Novel Insight Into Resistance Mechanisms In AML. Blood, 2010, 116, 178-178.	1.4	0
34	Molecular implementation of simple logic programs. Nature Nanotechnology, 2009, 4, 642-648.	31.5	121
35	Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues. BMC Biotechnology, 2008, 8, 17.	3.3	69
36	Towards molecular computers that operate in a biological environment. Physica D: Nonlinear Phenomena, 2008, 237, 1165-1172.	2.8	70

#	Article	IF	CITATIONS
37	RNA Computing in a Living Cell. Science, 2008, 322, 387-388.	12.6	28
38	Estimating Cell Depth from Somatic Mutations. PLoS Computational Biology, 2008, 4, e1000058.	3.2	35
39	De novo DNA synthesis using single molecule PCR. Nucleic Acids Research, 2008, 36, e107-e107.	14.5	25
40	Cell Lineage Analysis of a Mouse Tumor. Cancer Research, 2008, 68, 5924-5931.	0.9	63
41	Recursive construction of perfect DNA molecules from imperfect oligonucleotides. Molecular Systems Biology, 2008, 4, 191.	7.2	50
42	Reconstruction of Cell Lineage Trees in Mice. PLoS ONE, 2008, 3, e1939.	2.5	43
43	Logic goes in vitro. Nature Nanotechnology, 2007, 2, 84-85.	31.5	44
44	Bringing DNA Computers To Life. Scientific American, 2006, 294, 44-51.	1.0	50
45	Tapping the computing power of biological molecules gives rise to tiny machines that can speak directly to living cells. Scientific American, 2006, 294, 44-51.	1.0	19
46	Genomic Variability within an Organism Exposes Its Cell Lineage Tree. PLoS Computational Biology, 2005, 1, e50.	3.2	124
47	A universal mechanism ties genotype to phenotype in trinucleotide diseases. PLoS Computational Biology, 2005, preprint, e235.	3.2	0
48	Stochastic computing with biomolecular automata. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9960-9965.	7.1	93
49	An autonomous molecular computer for logical control of gene expression. Nature, 2004, 429, 423-429.	27.8	857
50	BioAmbients: an abstraction for biological compartments. Theoretical Computer Science, 2004, 325, 141-167.	0.9	354
51	The π-calculus as an Abstraction for Biomolecular Systems. Natural Computing Series, 2004, , 219-266.	2.2	45
52	Injecting Life with Computers. Lecture Notes in Computer Science, 2004, , 1-1.	1.3	0
53	DNA molecule provides a computing machine with both data and fuel. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2191-2196.	7.1	221
54	Cellular abstractions: Cells as computation. Nature, 2002, 419, 343-343.	27.8	234

#	Article	IF	CITATIONS
55	Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters, 2001, 80, 25-31.	0.6	361
56	Programmable and autonomous computing machine made of biomolecules. Nature, 2001, 414, 430-434.	27.8	648
57	Representation and simulation of biochemical processes using the π-calculus process algebra. , 2000, , 459-70.		141
58	The Family of Concurrent Logic Programming Languages. , 1991, , 359-485.		1
59	Guest editors' preface. New Generation Computing, 1990, 7, 85-87.	3.3	0
60	The languages FCP(:) and FCP(:,?). New Generation Computing, 1990, 7, 89-107.	3.3	8
61	A sequential abstract machine for flat concurrent prolog. The Journal of Logic Programming, 1989, 7, 85-123.	1.7	3
62	OR-parallel PROLOG in flat concurrent PROLOG. The Journal of Logic Programming, 1989, 6, 243-267.	1.7	3
63	The family of concurrent logic programming languages. ACM Computing Surveys, 1989, 21, 413-510.	23.0	344
64	Concurrent algorithmic debugging. ACM SIGPLAN Notices, 1989, 24, 248-260.	0.2	6
65	A distributed locking algorithm for a transactions system in flat concurrent prolog. Lecture Notes in Computer Science, 1989, , 304-320.	1.3	Ο
66	Specialisation of Prolog and FCP programs using abstract interpretation. New Generation Computing, 1988, 6, 159-186.	3.3	44
67	Notes on the complexity of systolic programs. Journal of Parallel and Distributed Computing, 1987, 4, 250-265.	4.1	5
68	A layered method for process and code mapping. New Generation Computing, 1987, 5, 185-205.	3.3	12
69	Compiling OR-parallelism into AND-parallelism. New Generation Computing, 1987, 5, 45-61.	3.3	11
70	Concurrent Prolog: A Progress Report. , 1987, , 277-313.		19
71	Concurrent Prolog: A progress report. , 1986, , 277-313.		8
72	Multiway merge with constant delay in Concurrent Prolog. New Generation Computing, 1986, 4, 211-216.	3.3	11

#	Article	IF	CITATIONS
73	A parallel implementation of Flat Concurrent Prolog. International Journal of Parallel Programming, 1986, 15, 245-275.	1.5	35
74	Systems programming in concurrent prolog. , 1984, , .		29
75	Fair, biased, and self-balancing merge operators: Their specification and implementation in Concurrent Prolog. New Generation Computing, 1984, 2, 221-240.	3.3	16
76	Guest editor's preface. New Generation Computing, 1984, 2, 305-308.	3.3	0
77	Object oriented programming in Concurrent Prolog. New Generation Computing, 1983, 1, 25-48.	3.3	143