
Ulf Pettersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11126822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Human Adenovirus 2 Transcriptome: an Amazing Complexity of Alternatively Spliced mRNAs. Journal of Virology, 2021, 95, .	3.4	15
2	Adenovirus in the omics era $\hat{a} \in$ " a multipronged strategy. FEBS Letters, 2020, 594, 1879-1890.	2.8	8
3	Phosphorylation Timeâ€Course Study of the Response during Adenovirus Type 2 Infection. Proteomics, 2020, 20, e1900327.	2.2	4
4	Encounters with adenovirus. Upsala Journal of Medical Sciences, 2019, 124, 83-93.	0.9	3
5	Transcriptomic and proteomic analyses reveal new insights into the regulation of immune pathways during adenovirus type 2 infection. BMC Microbiology, 2019, 19, 15.	3.3	10
6	Time-resolved proteomics of adenovirus infected cells. PLoS ONE, 2018, 13, e0204522.	2.5	18
7	Identification of the adenovirus type 2 C-168 protein. Virus Research, 2017, 238, 110-113.	2.2	4
8	Posttranscriptional Regulation in Adenovirus Infected Cells. Journal of Proteome Research, 2017, 16, 872-888.	3.7	20
9	Temporal characterization of the non-structural Adenovirus type 2 proteome and phosphoproteome using high-resolving mass spectrometry. Virology, 2017, 511, 240-248.	2.4	8
10	Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection. Virology, 2016, 492, 242-250.	2.4	30
11	Data on the expression of cellular IncRNAs in human adenovirus infected cells. Data in Brief, 2016, 8, 1263-1279.	1.0	6
12	Fluctuating expression of microRNAs in adenovirus infected cells. Virology, 2015, 478, 99-111.	2.4	37
13	Proteome Analysis of Adenovirus Using Mass Spectrometry. Methods in Molecular Biology, 2014, 1089, 25-44.	0.9	4
14	A new look at adenovirus splicing. Virology, 2014, 456-457, 329-341.	2.4	42
15	Tumour expression of bladder cancerâ€associated urinary proteins. BJU International, 2013, 112, 407-415.	2.5	35
16	Identification of adenovirus-encoded small RNAs by deep RNA sequencing. Virology, 2013, 442, 148-155.	2.4	14
17	Proteomic analysis of urinary biomarker candidates for nonmuscle invasive bladder cancer. Proteomics, 2012, 12, 135-144.	2.2	83
18	Linkage study of embryopathy—Polygenic inheritance of diabetes-induced skeletal malformations in the rat. Reproductive Toxicology, 2012, 33, 297-307.	2.9	4

#	Article	IF	CITATIONS
19	The transcriptome of the adenovirus infected cell. Virology, 2012, 424, 115-128.	2.4	49
20	Lennart Philipson: A fighter is gone. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18875-18875.	7.1	0
21	Activation of the interferon-induced STAT pathway during an adenovirus type 12 infection. Virology, 2009, 392, 186-195.	2.4	14
22	Support for schizophrenia susceptibility locus on chromosome 2q detected in a Swedish isolate using a dense map of microsatellites and SNPs. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1238-1244.	1.7	8
23	How adenovirus strives to control cellular gene expression. Virology, 2007, 363, 357-375.	2.4	45
24	Adenovirus-induced alterations in host cell gene expression prior to the onset of viral gene expression. Virology, 2006, 353, 1-5.	2.4	34
25	Human QKI, a new candidate gene for schizophrenia involved in myelination. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 84-90.	1.7	95
26	Molecular Markers for Discrimination of Benign and Malignant Follicular Thyroid Tumors. Tumor Biology, 2006, 27, 211-220.	1.8	46
27	Modulation of host cell gene expression during onset of the late phase of an adenovirus infection is focused on growth inhibition and cell architecture. Virology, 2005, 343, 236-245.	2.4	21
28	Identification of Specific Cellular Genes Up-Regulated Late in Adenovirus Type 12 Infection. Journal of Virology, 2005, 79, 2404-2412.	3.4	25
29	Impact of the interaction between adenovirus E1A and CtBP on host cell gene expression. Virus Research, 2005, 113, 51-63.	2.2	11
30	Reconstruction of ancestral haplotypes in a 12-generation schizophrenia pedigree. Psychiatric Genetics, 2004, 14, 1-8.	1.1	22
31	A comparative genetic analysis between collagen-induced arthritis and pristane-induced arthritis. Arthritis and Rheumatism, 2003, 48, 2332-2342.	6.7	19
32	Trypanothione synthetase locus in Trypanosoma cruzi CL Brener strain shows an extensive allelic divergence. Acta Tropica, 2003, 87, 269-278.	2.0	7
33	Strategic Attack on Host Cell Gene Expression during Adenovirus Infection. Journal of Virology, 2003, 77, 11006-11015.	3.4	66
34	Identification and Isolation of Dominant Susceptibility Loci for Pristane-Induced Arthritis. Journal of Immunology, 2003, 171, 407-416.	0.8	42
35	Genetic links between the acute-phase response and arthritis development in rats. Arthritis and Rheumatism, 2002, 46, 259-268.	6.7	28
36	Both common and unique susceptibility genes in different rat strains with pristane-induced arthritis. European Journal of Human Genetics, 2002, 10, 475-483.	2.8	22

#	Article	IF	CITATIONS
37	A Schizophrenia-Susceptibility Locus at 6q25, in One of the World's Largest Reported Pedigrees. American Journal of Human Genetics, 2001, 69, 96-105.	6.2	146
38	The Geographic Distribution of Monoamine Oxidase Haplotypes Supports a Bottleneck During the Dispersion of Modern Humans from Africa. Journal of Molecular Evolution, 2001, 52, 157-163.	1.8	21
39	Arthritis induced in rats with non-immunogenic adjuvants as models for rheumatoid arthritis. Immunological Reviews, 2001, 184, 184-202.	6.0	190
40	Genetic linkage analysis of the antibody responses to myelin basic protein and myelin oligodendrocyte glycoprotein in rats immunized with rat spinal cord homogenate. Journal of Neuroimmunology, 2001, 117, 21-29.	2.3	5
41	The tyrosine aminotransferase fromTrypanosoma rangeli: sequence and genomic characterization. FEMS Microbiology Letters, 2000, 189, 253-257.	1.8	4
42	Genetic control of arthritis in rats. Journal of Experimental Animal Science, 2000, 41, 7-13.	0.5	0
43	Evidence for Common Autoimmune Disease Genes Controlling Onset, Severity, and Chronicity Based on Experimental Models for Multiple Sclerosis and Rheumatoid Arthritis. Journal of Immunology, 2000, 164, 1564-1568.	0.8	95
44	A chromosome-specific dispersed gene family in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1999, 100, 229-234.	1.1	0
45	Linkage analysis of a large swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. , 1999, 88, 369-377.		47
46	Linkage analysis of a large swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. American Journal of Medical Genetics Part A, 1999, 88, 369-377.	2.4	1
47	DNA hypomethylation leads to elevated mutation rates. Nature, 1998, 395, 89-93.	27.8	859
48	Genetic control of arthritis onset, severity and chronicity in a model for rheumatoid arthritis in rats. Nature Genetics, 1998, 20, 401-404.	21.4	195
49	Polymorphisms of the genes encoding cruzipain, the major cysteine proteinase ofTrypanosoma cruzi, in the region encoding the C-terminal domain. FEMS Microbiology Letters, 1998, 159, 35-39.	1.8	11
50	Selective generation of chromosomal cosmid libraries within theTrypanosoma cruzi genome project. Electrophoresis, 1998, 19, 478-481.	2.4	12
51	Genetic linkage analysis of collagen-induced arthritis in the mouse. European Journal of Immunology, 1998, 28, 3321-3328.	2.9	136
52	Identification of 9 novel IDS gene mutations in 19 unrelated Hunter syndrome (Mucopolysaccharidosis) Tj ETQqC	0.0.rgBT	/Overlock 10
53	The NADP+-linked glutamate dehydrogenase from Trypanosoma cruzi: sequence, genomic organization and expression. Biochemical Journal, 1998, 330, 951-958.	3.7	35

54Complete Sequence of a 93.4-kb Contig from Chromosome 3 of <i>Trypanosoma cruzi</i>Containing a5.54654Strand-Switch Region. Genome Research, 1998, 8, 809-816.5.546

#	Article	IF	CITATIONS
55	Molecular and phenotypic variation in patients with severe Hunter syndrome. Human Molecular Genetics, 1997, 6, 479-486.	2.9	82
56	Two Distinct Deletions in theIDSGene and the GeneW: A Novel Type of Mutation Associated with the Hunter Syndrome. Genomics, 1997, 43, 123-129.	2.9	26
57	Trypanosoma rangeliandTrypanosoma cruzi:Molecular Characterization of Genes Encoding Putative Calcium-Binding Proteins, Highly Conserved in Trypanosomatids. Experimental Parasitology, 1996, 84, 387-399.	1.2	21
58	Molecular analysis of chromosome 21 in a patient with a phenotype of down syndrome and apparently normal karyotype. , 1996, 63, 566-572.		10
59	A putative vulnerability locus to multiple sclerosis maps to 5p14–p12 in a region syntenic to the murine locus Eae2. Nature Genetics, 1996, 13, 477-480.	21.4	200
60	Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nature Genetics, 1995, 10, 313-317.	21.4	169
61	Chromosome specific markers reveal conserved linkage groups in spite of extensive chromosomal size variation in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1995, 73, 63-74.	1.1	73
62	Inversion of the IDS gene resulting from recombination with IDS-related sequences in a common cause of the Hunter syndrome. Human Molecular Genetics, 1995, 4, 615-621.	2.9	167
63	Amelogenin signal peptide mutation: correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta. Genomics, 1995, 26, 159-162.	2.9	84
64	Genes for histone H3 in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1994, 66, 147-151.	1.1	31
65	A gene family encoding heterogeneous histone H1 proteins in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1994, 65, 317-330.	1.1	55
66	Hemophilia B in a 46,XX female probably caused by nonâ€random X inactivation. Clinical Genetics, 1993, 43, 1-4.	2.0	17
67	Members of the SAPA/trans-sialidase protein family have identical N-terminal sequences and a putative signal peptide. Molecular and Biochemical Parasitology, 1993, 59, 171-174.	1.1	22
68	Isolation and characterization of a gene from Trypanosoma cruzi encoding a 46-kilodalton protein with homology to human and rat tyrosine aminotransferase. Molecular and Biochemical Parasitology, 1993, 59, 253-262.	1.1	26
69	Molecular Basis and Consequences of a Deletion in the Amelogenin Gene, Analyzed by Capture PCR. Genomics, 1993, 17, 89-92.	2.9	18
70	Deletion screening of Sri Lankan Duchenne muscular dystrophy patients using the polymerase chain reaction. Annals of Tropical Paediatrics, 1993, 13, 83-86.	1.0	4
71	Genetic Typing of HLA Class II Genes in Swedish Populations: Application to Forensic Analysis. Journal of Forensic Sciences, 1993, 38, 554-570.	1.6	18
72	Infantile autism—fragile X: Molecular findings support genetic heterogeneity. American Journal of Medical Genetics Part A, 1992, 44, 830-833.	2.4	7

#	Article	IF	CITATIONS
73	A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics, 1991, 10, 971-975.	2.9	267
74	Transcription factor requirements for U2 snRNA-encoding gene activation in B lymphoid cells. Gene, 1991, 109, 297-301.	2.2	4
75	C-Junis Induced to High Continuous Expression During Differentiation of Hematopoietic Cells and is Regulated Independently from C-Fos. Leukemia and Lymphoma, 1991, 4, 193-204.	1.3	4
76	Linkage analysis of the fragile X syndrome using a new DNA marker U6.2 defining locus DXS304. American Journal of Medical Genetics Part A, 1991, 38, 322-327.	2.4	2
77	Molecular characterization of a DNA probe, U6.2, located close to the fragile X locus. American Journal of Medical Genetics Part A, 1991, 38, 380-383.	2.4	3
78	Chromosomal localization of seven cloned antigen genes provides evidence of diploidy and further demonstration of karyotype variability in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1990, 42, 213-223.	1.1	71
79	Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chagas' disease. Molecular and Biochemical Parasitology, 1989, 34, 221-228.	1.1	183
80	Secretion of coagulant factor VIII activity and antigen by in vitro cultivated rat liver sinusoidal endothelial cells. British Journal of Haematology, 1989, 73, 348-355.	2.5	41
81	Nuclear factor I can functionally replace transcription factor Sp1 in a U2 small nuclear RNA gene enhancer. Journal of Molecular Biology, 1989, 205, 387-396.	4.2	26
82	Molecular studies of haemophilia B in Sweden. Human Genetics, 1988, 81, 13-17.	3.8	7
83	Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Molecular and Biochemical Parasitology, 1988, 30, 27-33.	1.1	149
84	A novel spontaneous mutation of the bovine papillomavirus-1 genome. Plasmid, 1988, 20, 61-74.	1.4	16
85	A new type of muscular dystrophy in two brothers: analysis by use of DNA probes suggests autosomal recessive inheritance. Clinical Genetics, 1988, 34, 299-305.	2.0	2
86	Organization and Expression of Papillomavirus Genomes. , 1987, , 67-107.		7
87	A distant enhancer element is required for polymerase III transcription of a U6 RNA gene. Nature, 1987, 328, 356-359.	27.8	120
88	Use of a DNA Hybridization Assay for the Detection of Plasmodium Falciparumin Field Trials. American Journal of Tropical Medicine and Hygiene, 1987, 37, 230-234.	1.4	28
89	Replication of the bovine papillomavirus type 1 genome; antisense transcripts prevent episomal replication. Gene, 1986, 50, 185-193.	2.2	7
90	Organization and expression of the transforming region from the European elk papillomavirus (EEPV). Gene, 1986, 50, 195-205.	2.2	32

#	Article	IF	CITATIONS
91	Region E3 of human adenoviruses; differences between the oncogenic adenovirus-3 and the non-oncogenic adenovirus-2. Gene, 1986, 50, 173-184.	2.2	73
92	Structure and Function of the Adenovirus-2 Genome. , 1986, , 53-95.		13
93	Organization and Expression of the Genome of Bovine Papillomavirus Type 1. Novartis Foundation Symposium, 1986, 120, 23-38.	1.1	3
94	Detection of adenoviruses in stool specimens by nucleic acid spot hybridization. Journal of Medical Virology, 1985, 16, 213-218.	5.0	24
95	Splicing of the adenovirus-2 E1A 13S mRNA requires a minimal intron length and specific intron signals. Nucleic Acids Research, 1985, 13, 6299-6315.	14.5	26
96	Messenger RNAs from the transforming region of bovine papilloma virus type I. Journal of Molecular Biology, 1985, 182, 541-554.	4.2	173
97	Application of anin vitro assay for serum thymidine kinase: Results on viral disease and malignancies in humans. International Journal of Cancer, 1984, 33, 5-12.	5.1	112
98	Structural and Nonstructural Adenovirus Proteins. , 1984, , 205-270.		25
99	Splicing of adenovirus 2 early region 1A mRNAs is non-sequential. Journal of Molecular Biology, 1983, 165, 475-495.	4.2	100
100	The molecular structure of the 9 S mRNA from early region 1A of adenovirus serotype 2. Journal of Molecular Biology, 1983, 165, 496-499.	4.2	63
101	Genetic identification of a endoproteinase endoded by the adenovirus genome. Journal of Molecular Biology, 1983, 167, 217-222.	4.2	79
102	Structure of three spliced mRNAs from region E3 of adenovirus type 2. Gene, 1983, 22, 157-165.	2.2	45
103	Sequences of bovine papillomavirus type 1 DNA - functional and evolutionary implications. Nucleic Acids Research, 1983, 11, 2639-2650.	14.5	58
104	The Messenger RNAs from the Transforming Region of Human Adenoviruses. Current Topics in Microbiology and Immunology, 1983, 109, 107-123.	1.1	12
105	An adenovirus agnogene. Nucleic Acids Research, 1982, 10, 2539-2548.	14.5	41
106	A common sequence in the inverted terminal repetitions of human and avian adenovimses. Gene, 1982, 18, 193-197.	2.2	53
107	Different mRNAs from the transforming region of highly oncogenic and non-oncogenic human adenoviruses. Nature, 1982, 295, 705-707.	27.8	31
108	The sequence of the 3′ non-coding region of the hexon mRNA discloses a novel adenovirus gene. Nucleic Acids Research, 1981, 9, 1-17.	14.5	146

#	Article	IF	CITATIONS
109	Structure of two adenovirus type 12 transforming polypeptides and their evolutionary implications. Nature, 1980, 288, 174-176.	27.8	100
110	Construction of restriction enzyme fragment libraries containing DNA from human adenovirus types 2 and 5. Gene, 1980, 10, 47-52.	2.2	50
111	Control of adenovirus gene expression. Trends in Biochemical Sciences, 1980, 5, 135-138.	7.5	0
112	A DRB (5,6 dichloro-β-D-ribofuranosyIbenzimidazole)-resistant adenovirus mRNA. Nucleic Acids Research, 1979, 7, 1405-1418.	14.5	21
113	Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature, 1979, 281, 694-696.	27.8	448
114	Sequence analysis of adenovirus DNA: Complete nucleotide sequence of the spliced 5′ noncoding region of adenovirus 2 hexon messenger RNA. Cell, 1979, 16, 841-850.	28.9	102
115	Sequence of inverted terminal repetitions from different adenoviruses: Demonstration of conserved sequences and homology between SA7 termini and SV40 DNA. Cell, 1979, 17, 705-713.	28.9	131
116	Interaction between the adenovirus DNA-binding protein and double-stranded DNA. Journal of Molecular Biology, 1979, 132, 163-180.	4.2	66
117	Sequence analysis of adenovirus DNA. Journal of Molecular Biology, 1979, 134, 143-158.	4.2	65
118	A maturation protein in adenovirus morphogenesis. Virology, 1979, 93, 198-208.	2.4	60
119	The low molecular weight of RNAs of adenovirus 2-infected cells. Journal of Molecular Biology, 1978, 119, 293-328.	4.2	77
120	A protein kinase associated with adenovirus type 2. Virology, 1978, 87, 276-286.	2.4	31
121	Synthesis of a structural adenovirus polypeptide in the absence of viral DNA replication. Virology, 1978, 90, 67-79.	2.4	106
122	Sequence analysis of adenovirus DNA I. Nucleotide sequence at the carboxy-terminal end of the gene for adenovirus type 2 hexon. Virology, 1978, 91, 477-480.	2.4	45
123	Initiation of transcription in nuclei isolated from adenovirus infected cells. Nucleic Acids Research, 1978, 5, 205-219.	14.5	32
124	Two initiation sites for adenovirus 5.5S RNA. Nucleic Acids Research, 1978, 5, 195-204.	14.5	47
125	The gene and messenger RNA for adenovirus polypeptide IX. Cell, 1977, 12, 741-750.	28.9	89
126	Propagation in E. coli of bacteriophage lambda with integrated fragments of adenovirus 2 DNA. Gene, 1976, 1, 49-63.	2.2	16

8

#	Article	IF	CITATIONS
127	A new species of virus-coded low molecular weight RNA from cells infected with adenovirus type 2. Cell, 1976, 7, 585-593.	28.9	245
128	Two complementary strand-specific termination sites for adenovirus DNA replication. Cell, 1976, 9, 259-268.	28.9	76
129	Hybridization maps of early and late messenger RNA sequences on the adenovirus type 2 genome. Journal of Molecular Biology, 1976, 101, 479-501.	4.2	186
130	Location of sequences on the adenovirus genome coding for the 5.5S RNA. Cell, 1975, 6, 1-4.	28.9	111
131	Structural Studies of Adenovirus Type-2 Hexon Protein. FEBS Journal, 1974, 48, 179-192.	0.2	43
132	In vitro transcription of adenovirus 2 DNA by Escherichia coli RNA polymerase. Virology, 1974, 59, 153-167.	2.4	15
133	Viral DNA in transformed cells. Journal of Molecular Biology, 1974, 86, 709-726.	4.2	223
134	Complementary strand-specific sequences from unique fragments of adenovirus type 2 DNA for hybridization-mapping experiments. Journal of Molecular Biology, 1974, 88, 767-784.	4.2	53
135	Relationship of mRNA from Productively Infected Cells to the Complementary Strands of Adenovirus Type 2 DNA. Journal of Virology, 1974, 13, 370-377.	3.4	112
136	Specific Fragmentation of DNA of Adenovirus Serotypes 3, 5, 7, and 12, and Adeno-Simian Virus 40 Hybrid Virus Ad2 ⁺ ND1 by Restriction Endonuclease R· <i>Eco</i> RI. Journal of Virology, 1974, 14, 68-77.	3.4	73
137	Studies on the Transcription of Simian Virus 40 and Adenovirus Type 2. , 1974, 3, 167-179.		3
138	Structural proteins of adenoviruses. Virology, 1973, 52, 130-147.	2.4	186
139	Amount of viral DNA in the genome of cells transformed by adenovirus type 2. Journal of Molecular Biology, 1973, 73, 125-130.	4.2	347
140	Some unusual properties of replicating adenovirus type 2 DNA. Journal of Molecular Biology, 1973, 81, 521-527.	4.2	60
141	Adenovirus endonuclease: Association with the penton of adenovirus type 2. Journal of Molecular Biology, 1971, 60, 45-64.	4.2	78
142	Structural proteins of adenoviruses. Virology, 1971, 45, 364-373.	2.4	90
143	Structural proteins of adenoviruses. Virology, 1970, 42, 341-358.	2.4	178
144	Structural proteins of adenoviruses. Virology, 1969, 39, 90-106.	2.4	148

#	Article	IF	CITATIONS
145	Structural proteins of adenoviruses. Virology, 1968, 35, 204-215.	2.4	95
146	Virus-Receptor Interaction in an Adenovirus System. Journal of Virology, 1968, 2, 1064-1075.	3.4	372
147	Structural proteins of adenoviruses. Virology, 1967, 33, 575-590.	2.4	175