Leo Rouhiainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11125077/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Biosynthesis of microcystin hepatotoxins in the cyanobacterial genus Fischerella. Toxicon, 2018, 141, 43-50.	1.6	15
2	Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13669-13674.	7.1	27
3	Pseudoaeruginosins, Nonribosomal Peptides inNodularia spumigena. ACS Chemical Biology, 2015, 10, 725-733.	3.4	22
4	Reply to Sasso et al.: Distribution and phylogeny of nonribosomal peptide and polyketide biosynthetic pathways in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3947-E3947.	7.1	2
5	Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1909-17.	7.1	102
6	Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9259-9264.	7.1	310
7	The Genetic Basis for O-Acetylation of the Microcystin Toxin in Cyanobacteria. Chemistry and Biology, 2013, 20, 861-869.	6.0	20
8	Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evolutionary Biology, 2013, 13, 86.	3.2	29
9	New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena. PLoS ONE, 2013, 8, e73618.	2.5	65
10	Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics, 2012, 13, 613.	2.8	52
11	Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods To Detect Potential Producers. Applied and Environmental Microbiology, 2011, 77, 7271-7278.	3.1	166
12	Nostophycin Biosynthesis Is Directed by a Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase in the Toxic Cyanobacterium Nostoc sp. Strain 152. Applied and Environmental Microbiology, 2011, 77, 8034-8040.	3.1	29
13	Two Alternative Starter Modules for the Non-Ribosomal Biosynthesis of Specific Anabaenopeptin Variants in Anabaena (Cyanobacteria). Chemistry and Biology, 2010, 17, 265-273.	6.0	100
14	Highly Diverse Cyanobactins in Strains of the Genus <i>Anabaena</i> . Applied and Environmental Microbiology, 2010, 76, 701-709.	3.1	73
15	The nonâ€ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloomâ€forming cyanobacterium <i>Nodularia spumigena</i> . Molecular Microbiology, 2009, 73, 924-937.	2.5	63
16	Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evolutionary Biology, 2008, 8, 256.	3.2	46
17	Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology (United Kingdom), 2008, 154, 1007-1014.	1.8	36
18	Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evolutionary Biology, 2007, 7, 183.	3.2	97

LEO ROUHIAINEN

#	Article	IF	CITATIONS
19	Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90. Applied and Environmental Microbiology, 2004, 70, 686-692.	3.1	221
20	Effects of Phosphate and Light on Growth of and Bioactive Peptide Production by the Cyanobacterium Anabaena Strain 90 and Its Anabaenopeptilide Mutant. Applied and Environmental Microbiology, 2004, 70, 4551-4560.	3.1	69
21	Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 568-573.	7.1	432
22	PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Archives of Microbiology, 2003, 180, 402-410.	2.2	226
23	Quantitative Real-Time PCR for Determination ofMicrocystin Synthetase E Copy Numbers for Microcystis and Anabaena inLakes. Applied and Environmental Microbiology, 2003, 69, 7289-7297.	3.1	286
24	Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Molecular Microbiology, 2000, 37, 156-167.	2.5	162
25	Nonribosomal Peptide Synthesis and Toxigenicity of Cyanobacteria. Journal of Bacteriology, 1999, 181, 4089-4097.	2.2	243
26	Seven New Microcystins Possessing Two l-Glutamic Acid Units, Isolated from Anabaena sp. Strain 186. Chemical Research in Toxicology, 1998, 11, 143-149.	3.3	54
27	Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant from Anabaena sp. strain 66. Chemical Research in Toxicology, 1992, 5, 661-666.	3.3	62
28	Two new l-serine variants of microcystins-LR and -RR from Anabaena sp. strains 202 A1 and 202 A2. Toxicon, 1992, 30, 1457-1464.	1.6	50