Leo Rouhiainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11125077/publications.pdf

Version: 2024-02-01

28 papers 3,059 citations

257450
24
h-index

501196 28 g-index

28 all docs

28 docs citations

28 times ranked

2667 citing authors

#	Article	IF	CITATIONS
1	Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 568-573.	7.1	432
2	Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9259-9264.	7.1	310
3	Quantitative Real-Time PCR for Determination of Microcystin Synthetase E Copy Numbers for Microcystis and Anabaena in Lakes. Applied and Environmental Microbiology, 2003, 69, 7289-7297.	3.1	286
4	Nonribosomal Peptide Synthesis and Toxigenicity of Cyanobacteria. Journal of Bacteriology, 1999, 181, 4089-4097.	2.2	243
5	PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Archives of Microbiology, 2003, 180, 402-410.	2.2	226
6	Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90. Applied and Environmental Microbiology, 2004, 70, 686-692.	3.1	221
7	Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods To Detect Potential Producers. Applied and Environmental Microbiology, 2011, 77, 7271-7278.	3.1	166
8	Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Molecular Microbiology, 2000, 37, 156-167.	2.5	162
9	Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1909-17.	7.1	102
10	Two Alternative Starter Modules for the Non-Ribosomal Biosynthesis of Specific Anabaenopeptin Variants in Anabaena (Cyanobacteria). Chemistry and Biology, 2010, 17, 265-273.	6.0	100
11	Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evolutionary Biology, 2007, 7, 183.	3.2	97
12	Highly Diverse Cyanobactins in Strains of the Genus <i>Anabaena</i> . Applied and Environmental Microbiology, 2010, 76, 701-709.	3.1	73
13	Effects of Phosphate and Light on Growth of and Bioactive Peptide Production by the Cyanobacterium Anabaena Strain 90 and Its Anabaenopeptilide Mutant. Applied and Environmental Microbiology, 2004, 70, 4551-4560.	3.1	69
14	New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena. PLoS ONE, 2013, 8, e73618.	2.5	65
15	The nonâ€ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloomâ€forming cyanobacterium <i>Nodularia spumigena</i> . Molecular Microbiology, 2009, 73, 924-937.	2.5	63
16	Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant from Anabaena sp. strain 66. Chemical Research in Toxicology, 1992, 5, 661-666.	3.3	62
17	Seven New Microcystins Possessing Two l-Glutamic Acid Units, Isolated from Anabaena sp. Strain 186. Chemical Research in Toxicology, 1998, 11, 143-149.	3.3	54
18	Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics, 2012, 13, 613.	2.8	52

#	Article	IF	CITATIONS
19	Two new l-serine variants of microcystins-LR and -RR from Anabaena sp. strains 202 A1 and 202 A2. Toxicon, 1992, 30, 1457-1464.	1.6	50
20	Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evolutionary Biology, 2008, 8, 256.	3.2	46
21	Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology (United Kingdom), 2008, 154, 1007-1014.	1.8	36
22	Nostophycin Biosynthesis Is Directed by a Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase in the Toxic Cyanobacterium Nostoc sp. Strain 152. Applied and Environmental Microbiology, 2011, 77, 8034-8040.	3.1	29
23	Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evolutionary Biology, 2013, 13, 86.	3.2	29
24	Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13669-13674.	7.1	27
25	Pseudoaeruginosins, Nonribosomal Peptides inNodularia spumigena. ACS Chemical Biology, 2015, 10, 725-733.	3.4	22
26	The Genetic Basis for O-Acetylation of the Microcystin Toxin in Cyanobacteria. Chemistry and Biology, 2013, 20, 861-869.	6.0	20
27	Biosynthesis of microcystin hepatotoxins in the cyanobacterial genus Fischerella. Toxicon, 2018, 141, 43-50.	1.6	15
28	Reply to Sasso et al.: Distribution and phylogeny of nonribosomal peptide and polyketide biosynthetic pathways in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3947-E3947.	7.1	2