List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11122274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Entropy Coatings. , 2022, , 558-568.		0
2	High-Entropy Alloys: Overview. , 2022, , 294-307.		2
3	Effects of the carbon-to-nitrogen ratio on the microstructure and properties of (CrNbSiTiZr)C N high-entropy carbonitride films. Materials Chemistry and Physics, 2022, 277, 125374.	4.0	18
4	Effect of Mo on the Mechanical and Corrosion Behaviors in Non-Equal Molar AlCrFeMnNi BCC High-Entropy Alloys. Materials, 2022, 15, 751.	2.9	6
5	Tailoring Ferrimagnetic Transition Temperatures, Coercivity Fields, and Saturation Magnetization by Modulating Mn Concentration in (CoCrFeNi)1â [~] xMnx High-Entropy Alloys. Frontiers in Materials, 2022, 9, .	2.4	4
6	Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms. Journal of Materials Science and Technology, 2022, 114, 191-205.	10.7	13
7	Microstructure evolution in high-pressure phase transformations of CrFeNi and CoCrFeMnNi alloys. Journal of Alloys and Compounds, 2022, 918, 165383.	5.5	3
8	Elemental effects on the oxidation of refractory compositionally complex alloys. International Journal of Refractory Metals and Hard Materials, 2022, 108, 105918.	3.8	7
9	Tensile creep behavior of HfNbTaTiZr refractory high entropy alloy at elevated temperatures. Acta Materialia, 2022, 237, 118188.	7.9	27
10	Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions. ACS Nano, 2021, 15, 12324-12333.	14.6	44
11	High-temperature shape memory properties of Cu15Ni35Ti25Hf12.5Zr12.5 high-entropy alloy. Journal of Materials Research and Technology, 2021, 14, 1235-1242.	5.8	17
12	Different lattice distortion effects on the tensile properties of Ni-W dilute solutions and CrFeNi and CoCrFeMnNi concentrated solutions. Acta Materialia, 2021, 221, 117399.	7.9	16
13	Strength through high slip-plane density. Science, 2021, 374, 940-941.	12.6	10
14	Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test. Intermetallics, 2020, 118, 106635.	3.9	5
15	<i>In operando</i> synchrotron X-ray studies of a novel spinel (Ni _{0.2} Co _{0.2} Mn _{0.2} Fe _{0.2} Ti _{0.2}) ₃ O <s high-entropy oxide for energy storage applications. Journal of Materials Chemistry A, 2020, 8, 21756-21770.</s 	sub>410.3	ap ⁹⁹
16	Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Scientific Reports, 2020, 10, 12163.	3.3	21
17	Carbon Encapsulation of High Entropy Alloy Nanoparticles with Extraordinary Coercivity and Saturation at Room Temperature. Particle and Particle Systems Characterization, 2020, 37, 2000137.	2.3	8
18	Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Materials Letters, 2020, 272, 127832.	2.6	51

IIEN-WEI YEH

#	Article	IF	CITATIONS
19	Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance. Advanced Materials, 2020, 32, e1906457.	21.0	71
20	Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. International Journal of Plasticity, 2019, 122, 212-224.	8.8	51
21	Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. Journal of Alloys and Compounds, 2019, 795, 19-26.	5.5	123
22	An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide. Scientific Reports, 2019, 9, 7266.	3.3	63
23	High-entropy CoCrFeMnNi alloy subjected to high-strain-rate compressive deformation. Materials Characterization, 2019, 147, 193-198.	4.4	43
24	Effects of Mo, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys. Entropy, 2019, 21, 15.	2.2	78
25	Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1-28.	2.2	50
26	Oxidation Behavior between 700 and 1300 °C of Refractory TiZrNbHfTa Highâ€Entropy Alloys Containing Aluminum. Advanced Engineering Materials, 2018, 20, 1700948.	3.5	88
27	Low-resistivity oxides in Ti <i>_x</i> FeCoNi thin films after vacuum annealing. Surface Engineering, 2018, 34, 667-673.	2.2	2
28	Fatigue behavior of high-entropy alloys: A review. Science China Technological Sciences, 2018, 61, 168-178.	4.0	71
29	Irradiation effects in high entropy alloys and 316H stainless steel at 300â€ [−] °C. Journal of Nuclear Materials, 2018, 510, 421-430.	2.7	54
30	Breakthrough applications of high-entropy materials. Journal of Materials Research, 2018, 33, 3129-3137.	2.6	139
31	Constitutive modeling of deformation behavior of high-entropy alloys with face-centered cubic crystal structure. Materials Research Letters, 2017, 5, 350-356.	8.7	48
32	The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy. Scientific Reports, 2017, 7, 12658.	3.3	136
33	Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 2017, 21, 299-311.	11.5	62
34	Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing. Materials, 2017, 10, 1141.	2.9	1
35	Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films. Entropy, 2016, 18, 308.	2.2	26
36	Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems. Scientific Reports, 2016, 6, 22306.	3.3	50

#	Article	IF	CITATIONS
37	Overview of High-Entropy Alloys. , 2016, , 1-19.		11
38	Potential Applications and Prospects. , 2016, , 493-512.		3
39	High-Entropy Coatings. , 2016, , 469-491.		4
40	Physical Metallurgy. , 2016, , 51-113.		11
41	Functional Properties. , 2016, , 237-265.		2
42	Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Materials Letters, 2016, 184, 200-203.	2.6	168
43	Electron ballistic characteristic optimization in individual MWCNT by oxygen plasma treatment. RSC Advances, 2016, 6, 107977-107983.	3.6	2
44	A Heat-Resistant NiCo _{0.6} Fe _{0.2} Cr _{1.5} SiAlTi _{0.2} Overlay Coating for High-Temperature Applications. Journal of the Electrochemical Society, 2016, 163, C752-C758.	2.9	25
45	Compressive deformation behavior of CrMnFeCoNi high-entropy alloy. Metals and Materials International, 2016, 22, 982-986.	3.4	59
46	ZnO quantum dots decorated on optimized carbon nanotube intramolecular junctions exhibit superior field emission properties. RSC Advances, 2016, 6, 60877-60887.	3.6	10
47	Solution strengthening of ductile refractory HfMo x NbTaTiZr high-entropy alloys. Materials Letters, 2016, 175, 284-287.	2.6	144
48	Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations. Journal of Alloys and Compounds, 2016, 674, 455-462.	5.5	153
49	Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics, 2016, 69, 1-9.	3.9	108
50	Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy and High-Entropy Alloys. Scientific Reports, 2015, 5, 16997.	3.3	103
51	Machining Performance of Sputter-Deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride Coatings. Coatings, 2015, 5, 312-325.	2.6	47
52	A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scripta Materialia, 2015, 101, 32-35.	5.2	51
53	Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics, 2015, 62, 76-83.	3.9	407
54	In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy. Intermetallics, 2015, 62, 1-6.	3.9	63

#	Article	IF	CITATIONS
55	Physical Metallurgy of High-Entropy Alloys. Jom, 2015, 67, 2254-2261.	1.9	268
56	Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Materialia, 2015, 99, 247-258.	7.9	355
57	Phase and structure development of spontaneously ambient-grown ZnO·xH ₂ O and TiO ₂ ·xH ₂ O nanostructures towards oxide single crystals. RSC Advances, 2015, 5, 35061-35069.	3.6	0
58	Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. Journal of Alloys and Compounds, 2015, 624, 100-107.	5.5	201
59	New TiC/Co1.5CrFeNi1.5Ti0.5 Cermet with Slow TiC Coarsening During Sintering. Jom, 2014, 66, 2050-2056.	1.9	22
60	Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres. Nanoscale Research Letters, 2014, 9, 307.	5.7	5
61	On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 184-190.	2.2	62
62	Novel cermet material of WC/multi-element alloy. International Journal of Refractory Metals and Hard Materials, 2014, 43, 200-204.	3.8	101
63	Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2014, 587, 544-552.	5.5	413
64	Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds, 2014, 589, 143-152.	5.5	592
65	High entropy alloy mediated growth of graphene. CrystEngComm, 2014, 16, 6187-6194.	2.6	7
66	High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014, 2, 107-123.	8.7	2,186
67	Studies on the photocatalysis of core-shelled SiO2–Ag nanospheres by controlled surface plasmon resonance under visible light. Applied Surface Science, 2014, 311, 399-404.	6.1	30
68	Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High-entropy Materials. Scientific Reports, 2014, 4, 4162.	3.3	81
69	Improved Diffusion-Resistant Ability of Multicomponent Nitrides: From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)N. Jom, 2013, 65, 1790-1796.	1.9	28
70	Phase Diagrams of High-Entropy Alloy System Al-Co-Cr-Fe-Mo-Ni. Jom, 2013, 65, 1829-1839.	1.9	26
71	Effect of Aluminum Content on Microstructure and Mechanical Properties of Al x CoCrFeMo0.5Ni High-Entropy Alloys. Jom, 2013, 65, 1840-1847.	1.9	57
72	Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013, 65, 1759-1771.	1.9	952

#	Article	IF	CITATIONS
73	Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy. Journal of Alloys and Compounds, 2013, 551, 12-18.	5.5	50
74	Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters, 2013, 1, 207-212.	8.7	280
75	Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics, 2013, 32, 329-336.	3.9	82
76	Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 2013, 221, 118-123.	4.8	128
77	Li4Ti5O12-coated graphite anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 112, 529-534.	5.2	30
78	On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys. Intermetallics, 2013, 32, 401-407.	3.9	92
79	Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surface and Coatings Technology, 2012, 206, 5096-5102.	4.8	53
80	Ag-Nanoparticle-Decorated SiO ₂ Nanospheres Exhibiting Remarkable Plasmon-Mediated Photocatalytic Properties. Journal of Physical Chemistry C, 2012, 116, 19039-19045.	3.1	155
81	Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012, 26, 44-51.	3.9	1,046
82	Coreâ€5helled MCMB‣i ₄ Ti ₅ O ₁₂ Anode Material for Lithiumâ€ion Batteries. Journal of the Chinese Chemical Society, 2012, 59, 1206-1210.	1.4	5
83	Microstructures and Mechanical Performance of Plasma-Nitrided Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2390-2400.	2.2	17
84	Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100â^'xNx. Surface and Coatings Technology, 2012, 206, 4106-4112.	4.8	159
85	Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid Films, 2012, 520, 2613-2618.	1.8	79
86	Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings. Thin Solid Films, 2012, 520, 6183-6188.	1.8	86
87	Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization. Journal of the Electrochemical Society, 2011, 158, H1161.	2.9	166
88	Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)–Si _x –N coatings by reactive RF magnetron sputtering. Journal Physics D: Applied Physics, 2011, 44, 205405.	2.8	36
89	Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2011, 509, 1607-1614.	5.5	338
90	Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties. AlP Advances, 2011, 1, .	1.3	23

#	Article	IF	CITATIONS
91	TiFeCoNi oxide thin film – A new composition with extremely low electrical resistivity at room temperature. Scripta Materialia, 2011, 64, 173-176.	5.2	10
92	Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 2011, 59, 6308-6317.	7.9	1,112
93	On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3581-3588.	5.6	267
94	Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 2011, 519, 3185-3190.	1.8	167
95	Enhanced optoelectronic performance from the Ti-doped ZnO nanowires. Journal of Applied Physics, 2011, 109, 074318.	2.5	27
96	Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5818-5825.	5.6	240
97	Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings. Scripta Materialia, 2010, 62, 105-108.	5.2	105
98	Microstructure and Mechanical Properties of New AlCo _x CrFeMo _{0.5} Ni Highâ€Entropy Alloys. Advanced Engineering Materials, 2010, 12, 44-49.	3.5	104
99	Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 2010, 35, 9046-9059.	7.1	200
100	Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films, 2010, 518, 2732-2737.	1.8	80
101	Microstructure and mechanical performance of new Al0.5CrFe1.5MnNi0.5 high-entropy alloys improved by plasma nitriding. Surface and Coatings Technology, 2010, 204, 3118-3124.	4.8	44
102	Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear, 2010, 268, 653-659.	3.1	291
103	Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. Journal of Alloys and Compounds, 2010, 490, 160-165.	5.5	241
104	Amorphization of equimolar alloys with HCP elements during mechanical alloying. Journal of Alloys and Compounds, 2010, 506, 210-215.	5.5	78
105	Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy. Applied Physics Letters, 2009, 95, 241905.	3.3	15
106	Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys. Materials Chemistry and Physics, 2009, 118, 354-361.	4.0	21
107	Microstructure and Mechanical Performance of Brandâ€New Al _{0.3} CrFe _{1.5} MnNi _{0.5} Highâ€Entropy Alloys. Advanced Engineering Materials, 2009, 11, 788-794.	3.5	23
108	Effect of Aluminum Content on Plasma-Nitrided Al x CoCrCuFeNi High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1479-1486.	2.2	58

#	Article	IF	CITATIONS
109	Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤â‰⊉) high-entropy alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 163, 184-189.	3.5	521
110	Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings. Thin Solid Films, 2009, 518, 180-184.	1.8	65
111	Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surface and Coatings Technology, 2009, 203, 1891-1896.	4.8	171
112	Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. Journal of Alloys and Compounds, 2009, 477, 696-705.	5.5	85
113	Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. Journal of Alloys and Compounds, 2009, 481, 768-775.	5.5	194
114	Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. Journal of Alloys and Compounds, 2009, 486, 427-435.	5.5	263
115	Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤â‰⊉) high-entropy alloys. Journal of Alloys and Compounds, 2009, 488, 57-64.	5.5	681
116	Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. Journal Physics D: Applied Physics, 2009, 42, 115401.	2.8	64
117	Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films, 2008, 516, 5527-5530.	1.8	155
118	Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surface and Coatings Technology, 2008, 202, 3360-3366.	4.8	152
119	Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surface and Coatings Technology, 2008, 202, 3732-3738.	4.8	97
120	Nitride films deposited from an equimolar Al–Cr–Mo–Si–Ti alloy target by reactive direct current magnetron sputtering. Thin Solid Films, 2008, 516, 6402-6408.	1.8	96
121	Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N _{<i>x</i>} coatings. Journal Physics D: Applied Physics, 2008, 41, 235402.	2.8	57
122	Rapidly solidified structure of alloys with up to eight equal-molar elements—a simulation by molecular dynamics. Journal of Physics Condensed Matter, 2008, 20, 145214.	1.8	35
123	Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Applied Physics Letters, 2008, 92, .	3.3	87
124	Characterization of Ga-doped ZnO nanowires grown by thermal chemical vapor deposition. , 2008, , .		0
125	Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surface and Coatings Technology, 2007, 201, 6993-6998.	4.8	89
126	Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 457, 77-83.	5.6	168

#	Article	IF	CITATIONS
127	Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 409-419.	5.6	32
128	Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 2007, 103, 41-46.	4.0	490
129	On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters, 2007, 61, 1-5.	2.6	490
130	Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. Journal Physics D: Applied Physics, 2006, 39, 4628-4633.	2.8	69
131	Microstructure and Properties of Al _{0.5} CoCrCuFeNiTi <i>_x</i> (<i>x</i> =0–2.0) High-Entropy Alloys. Materials Transactions, 2006, 47, 1395-1401.	1.2	149
132	Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology, 2006, 201, 3275-3280.	4.8	261
133	Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006, 261, 513-519.	3.1	554
134	Hyperfine splitting from magnetic boride domains embedded in Fe–Co–Ni–Al–B–Si alloy. Applied Physics Letters, 2006, 89, 182503.	3.3	14
135	Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1363-1369.	2.2	273
136	Mechanical behaviors of chromium- or niobium-modified Ni47.5Al25Fe27.5 alloy at elevated temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 175-184.	2.2	3
137	In situ epitaxial growth of TiO2 on RuO2 nanorods with reactive sputtering. Applied Physics Letters, 2006, 88, 043115.	3.3	28
138	Recent progress in high-entropy alloys. European Journal of Control, 2006, 31, 633-648.	2.6	1,316
139	FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0.5FevNiw high-entropy alloys. European Journal of Control, 2006, 31, 669-684.	2.6	73
140	Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys. European Journal of Control, 2006, 31, 685-698.	2.6	77
141	Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. European Journal of Control, 2006, 31, 723-736.	2.6	34
142	Industrial development of high-entropy alloys. European Journal of Control, 2006, 31, 737-747.	2.6	76
143	Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 2005, 200, 1361-1365.	4.8	138
144	A novel process for fabricating electrical contact SnO2/Ag composites by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2441-2447.	2.2	17

#	Article	IF	CITATIONS
145	Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1263-1271.	2.2	690
146	Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 881-893.	2.2	933
147	Microstructural evolution and superplasticity of Al-5.8Mg-0.23Mn alloys processed by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2225-2234.	2.2	17
148	Atomic-Scale Observation on the Nucleation and Growth of Displacement-Activated Palladium Catalysts and Electroless Copper Plating. Electrochemical and Solid-State Letters, 2005, 8, C114.	2.2	13
149	Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1465-1469.	2.2	524
150	Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2533-2536.	2.2	853
151	Sn/Pd Catalyzation and Electroless Cu Deposition on TaN Diffusion Barrier Layers. Journal of the Electrochemical Society, 2002, 149, C143.	2.9	42
152	Damping behavior of in situ Al–(graphite, Al4C3) composites produced by reciprocating extrusion. Journal of Materials Research, 2001, 16, 1372-1380.	2.6	20
153	Electroless Copper Deposition for Ultralarge-Scale Integration. Journal of the Electrochemical Society, 2001, 148, C47.	2.9	77
154	An in situ composite of Al (graphite, Al4C3) produced by reciprocating extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 277, 25-32.	5.6	52
155	Study of 6061-Al2O3p composites produced by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2587-2596.	2.2	28
156	Microstructures and tensile properties of an A1-12 wt pct Si alloy produced by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2503-2512.	2.2	16
157	Improved Microstructures and Mechanical Properties of 2024 Aluminum Alloy Produced by a Reciprocating Extrusion Method. Materials Transactions, JIM, 1999, 40, 233-241.	0.9	24
158	A reciprocating extrusion process for producing hypereutectic Al–20wt.% Si wrought alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 252, 212-221.	5.6	62
159	The cracking mechanism of silicon particles in an A357 aluminum alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3558-3568.	2.2	114
160	The improved microstructures and properties of 7075 alloys produced by a water-cooling centrifugal casting method. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 1933-1944.	2.2	13
161	A study of the microstructures and properties of an A390.0 aluminium alloy produced by the layer deposition process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 165, 157-165.	5.6	8
162	The microstructures and properties of an al- 12 wt pct. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 2313-2321.	1.4	9

#	Article	IF	CITATIONS
163	The Correlation of Fracture Toughness and Transgranular Fracture in Al-5.6% Zn-2.5% Mg Alloys with Small Additions of Fe. Transactions of the Japan Institute of Metals, 1986, 27, 504-511.	0.5	6