Jien-Wei Yeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11122274/publications.pdf

Version: 2024-02-01

10986 6996 24,717 163 71 154 citations h-index g-index papers 167 167 167 7294 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014, 2, 107-123.	8.7	2,186
2	Recent progress in high-entropy alloys. European Journal of Control, 2006, 31, 633-648.	2.6	1,316
3	Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 2011, 59, 6308-6317.	7.9	1,112
4	Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012, 26, 44-51.	3.9	1,046
5	Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013, 65, 1759-1771.	1.9	952
6	Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 881-893.	2.2	933
7	Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2533-2536.	2.2	853
8	Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1263-1271.	2.2	690
9	Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤â‰ 2) high-entropy alloys. Journal of Alloys and Compounds, 2009, 488, 57-64.	5.5	681
10	Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds, 2014, 589, 143-152.	5 . 5	592
11	Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006, 261, 513-519.	3.1	554
12	Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1465-1469.	2.2	524
13	Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0â‰æâ‰æ) high-entropy alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 163, 184-189.	3.5	521
14	Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 2007, 103, 41-46.	4.0	490
15	On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters, 2007, 61, 1-5.	2.6	490
16	Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2014, 587, 544-552.	5.5	413
17	Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics, 2015, 62, 76-83.	3.9	407
18	Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Materialia, 2015, 99, 247-258.	7.9	355

#	Article	IF	CITATIONS
19	Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2011, 509, 1607-1614.	5.5	338
20	Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear, 2010, 268, 653-659.	3.1	291
21	Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters, 2013, 1, 207-212.	8.7	280
22	Effect of vanadium addition on the microstructure, hardness, and wear resistance of Alo.5CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1363-1369.	2.2	273
23	Physical Metallurgy of High-Entropy Alloys. Jom, 2015, 67, 2254-2261.	1.9	268
24	On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3581-3588.	5. 6	267
25	Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. Journal of Alloys and Compounds, 2009, 486, 427-435.	5.5	263
26	Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology, 2006, 201, 3275-3280.	4.8	261
27	Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. Journal of Alloys and Compounds, 2010, 490, 160-165.	5. 5	241
28	Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5818-5825.	5.6	240
29	Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. Journal of Alloys and Compounds, 2015, 624, 100-107.	5.5	201
30	Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 2010, 35, 9046-9059.	7.1	200
31	Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. Journal of Alloys and Compounds, 2009, 481, 768-775.	5.5	194
32	Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surface and Coatings Technology, 2009, 203, 1891-1896.	4.8	171
33	Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Materials Science & Droperties, Microstructural Materials: Properties, Microstructure and Processing, 2007, 457, 77-83.	5.6	168
34	Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Materials Letters, 2016, 184, 200-203.	2.6	168
35	Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 2011, 519, 3185-3190.	1.8	167
36	Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization. Journal of the Electrochemical Society, 2011, 158, H1161.	2.9	166

#	Article	IF	CITATIONS
37	Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100â^2xNx. Surface and Coatings Technology, 2012, 206, 4106-4112.	4.8	159
38	Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films, 2008, 516, 5527-5530.	1.8	155
39	Ag-Nanoparticle-Decorated SiO ₂ Nanospheres Exhibiting Remarkable Plasmon-Mediated Photocatalytic Properties. Journal of Physical Chemistry C, 2012, 116, 19039-19045.	3.1	155
40	Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations. Journal of Alloys and Compounds, 2016, 674, 455-462.	5.5	153
41	Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surface and Coatings Technology, 2008, 202, 3360-3366.	4.8	152
42	Microstructure and Properties of Al _{0.5} CoCrCuFeNiTi <i>_x</i> (<i>x</i> =0–2.0) High-Entropy Alloys. Materials Transactions, 2006, 47, 1395-1401.	1.2	149
43	Solution strengthening of ductile refractory HfMo x NbTaTiZr high-entropy alloys. Materials Letters, 2016, 175, 284-287.	2.6	144
44	Breakthrough applications of high-entropy materials. Journal of Materials Research, 2018, 33, 3129-3137.	2.6	139
45	Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 2005, 200, 1361-1365.	4.8	138
46	The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy. Scientific Reports, 2017, 7, 12658.	3.3	136
47	Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 2013, 221, 118-123.	4.8	128
48	Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. Journal of Alloys and Compounds, 2019, 795, 19-26.	5 . 5	123
49	The cracking mechanism of silicon particles in an A357 aluminum alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3558-3568.	2.2	114
50	Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics, 2016, 69, 1-9.	3.9	108
51	Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings. Scripta Materialia, 2010, 62, 105-108.	5.2	105
52	Microstructure and Mechanical Properties of New AlCo _x CrFeMo _{0.5} Ni Highâ€Entropy Alloys. Advanced Engineering Materials, 2010, 12, 44-49.	3.5	104
53	Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy and High-Entropy Alloys. Scientific Reports, 2015, 5, 16997.	3.3	103
54	Novel cermet material of WC/multi-element alloy. International Journal of Refractory Metals and Hard Materials, 2014, 43, 200-204.	3.8	101

#	Article	IF	CITATIONS
55	Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surface and Coatings Technology, 2008, 202, 3732-3738.	4.8	97
56	Nitride films deposited from an equimolar Al–Cr–Mo–Si–Ti alloy target by reactive direct current magnetron sputtering. Thin Solid Films, 2008, 516, 6402-6408.	1.8	96
57	On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys. Intermetallics, 2013, 32, 401-407.	3.9	92
58	Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surface and Coatings Technology, 2007, 201, 6993-6998.	4.8	89
59	Oxidation Behavior between 700 and 1300 °C of Refractory TiZrNbHfTa Highâ€Entropy Alloys Containing Aluminum. Advanced Engineering Materials, 2018, 20, 1700948.	3.5	88
60	Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Applied Physics Letters, 2008, 92, .	3.3	87
61	Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings. Thin Solid Films, 2012, 520, 6183-6188.	1.8	86
62	Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. Journal of Alloys and Compounds, 2009, 477, 696-705.	5.5	85
63	Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics, 2013, 32, 329-336.	3.9	82
64	Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High-entropy Materials. Scientific Reports, 2014, 4, 4162.	3.3	81
65	Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films, 2010, 518, 2732-2737.	1.8	80
66	Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid Films, 2012, 520, 2613-2618.	1.8	79
67	Amorphization of equimolar alloys with HCP elements during mechanical alloying. Journal of Alloys and Compounds, 2010, 506, 210-215.	5.5	78
68	Effects of Mo, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys. Entropy, 2019, 21, 15.	2.2	78
69	Electroless Copper Deposition for Ultralarge-Scale Integration. Journal of the Electrochemical Society, 2001, 148, C47.	2.9	77
70	Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys. European Journal of Control, 2006, 31, 685-698.	2.6	77
71	Industrial development of high-entropy alloys. European Journal of Control, 2006, 31, 737-747.	2.6	76
72	FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0.5FevNiw high-entropy alloys. European Journal of Control, 2006, 31, 669-684.	2.6	73

#	Article	IF	Citations
73	Fatigue behavior of high-entropy alloys: A review. Science China Technological Sciences, 2018, 61, 168-178.	4.0	71
74	Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance. Advanced Materials, 2020, 32, e1906457.	21.0	71
75	Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. Journal Physics D: Applied Physics, 2006, 39, 4628-4633.	2.8	69
76	<i>In operando</i> synchrotron X-ray studies of a novel spinel (Ni _{0.2} Co _{0.2} Mn _{0.2} Fe _{0.2} Ti _{0.2}) ₃ 6 high-entropy oxide for energy storage applications. Journal of Materials Chemistry A, 2020, 8, 21756-21770.	O _{4<!--</td--><td>sub> 66</td>}	sub> 66
77	Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings. Thin Solid Films, 2009, 518, 180-184.	1.8	65
78	Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. Journal Physics D: Applied Physics, 2009, 42, 115401.	2.8	64
79	In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy. Intermetallics, 2015, 62, 1-6.	3.9	63
80	An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide. Scientific Reports, 2019, 9, 7266.	3.3	63
81	A reciprocating extrusion process for producing hypereutectic Al–20wt.% Si wrought alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 252, 212-221.	5.6	62
82	On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 184-190.	2.2	62
83	Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 2017, 21, 299-311.	11.5	62
84	Compressive deformation behavior of CrMnFeCoNi high-entropy alloy. Metals and Materials International, 2016, 22, 982-986.	3.4	59
85	Effect of Aluminum Content on Plasma-Nitrided Al x CoCrCuFeNi High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1479-1486.	2.2	58
86	Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N _{<i>x</i>} coatings. Journal Physics D: Applied Physics, 2008, 41, 235402.	2.8	57
87	Effect of Aluminum Content on Microstructure and Mechanical Properties of Al x CoCrFeMo0.5Ni High-Entropy Alloys. Jom, 2013, 65, 1840-1847.	1.9	57
88	Irradiation effects in high entropy alloys and 316H stainless steel at 300â€Â°C. Journal of Nuclear Materials, 2018, 510, 421-430.	2.7	54
89	Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surface and Coatings Technology, 2012, 206, 5096-5102.	4.8	53
90	An in situ composite of Al (graphite, Al4C3) produced by reciprocating extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 277, 25-32.	5.6	52

#	Article	IF	Citations
91	A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scripta Materialia, 2015, 101, 32-35.	5.2	51
92	Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. International Journal of Plasticity, 2019, 122, 212-224.	8.8	51
93	Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Materials Letters, 2020, 272, 127832.	2.6	51
94	Intrinsic surface hardening and precipitation kinetics of AlO.3CrFe1.5MnNiO.5 multi-component alloy. Journal of Alloys and Compounds, 2013, 551, 12-18.	5.5	50
95	Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems. Scientific Reports, 2016, 6, 22306.	3.3	50
96	Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1-28.	2.2	50
97	Constitutive modeling of deformation behavior of high-entropy alloys with face-centered cubic crystal structure. Materials Research Letters, 2017, 5, 350-356.	8.7	48
98	Machining Performance of Sputter-Deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride Coatings. Coatings, 2015, 5, 312-325.	2.6	47
99	Microstructure and mechanical performance of new Al0.5CrFe1.5MnNi0.5 high-entropy alloys improved by plasma nitriding. Surface and Coatings Technology, 2010, 204, 3118-3124.	4.8	44
100	Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions. ACS Nano, 2021, 15, 12324-12333.	14.6	44
101	High-entropy CoCrFeMnNi alloy subjected to high-strain-rate compressive deformation. Materials Characterization, 2019, 147, 193-198.	4.4	43
102	Sn/Pd Catalyzation and Electroless Cu Deposition on TaN Diffusion Barrier Layers. Journal of the Electrochemical Society, 2002, 149, C143.	2.9	42
103	Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr) $\hat{a}\in \text{Si}\times \text{Sub}\times \hat{a}\in \text{N}$ coatings by reactive RF magnetron sputtering. Journal Physics D: Applied Physics, 2011, 44, 205405.	2.8	36
104	Rapidly solidified structure of alloys with up to eight equal-molar elementsâ€"a simulation by molecular dynamics. Journal of Physics Condensed Matter, 2008, 20, 145214.	1.8	35
105	Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. European Journal of Control, 2006, 31, 723-736.	2.6	34
106	Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion. Materials Science & Department of the Science & D	5.6	32
107	Li4Ti5O12-coated graphite anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 112, 529-534.	5.2	30
108	Studies on the photocatalysis of core-shelled SiO2–Ag nanospheres by controlled surface plasmon resonance under visible light. Applied Surface Science, 2014, 311, 399-404.	6.1	30

#	Article	IF	Citations
109	Study of 6061-Al2O3p composites produced by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2587-2596.	2.2	28
110	In situ epitaxial growth of TiO2 on RuO2 nanorods with reactive sputtering. Applied Physics Letters, 2006, 88, 043115.	3.3	28
111	Improved Diffusion-Resistant Ability of Multicomponent Nitrides: From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)N. Jom, 2013, 65, 1790-1796.	1.9	28
112	Enhanced optoelectronic performance from the Ti-doped ZnO nanowires. Journal of Applied Physics, 2011, 109, 074318.	2.5	27
113	Tensile creep behavior of HfNbTaTiZr refractory high entropy alloy at elevated temperatures. Acta Materialia, 2022, 237, 118188.	7.9	27
114	Phase Diagrams of High-Entropy Alloy System Al-Co-Cr-Fe-Mo-Ni. Jom, 2013, 65, 1829-1839.	1.9	26
115	Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films. Entropy, 2016, 18, 308.	2.2	26
116	A Heat-Resistant NiCo _{0.6} Fe _{0.2} Cr _{1.5} SiAlTi _{0.2} Overlay Coating for High-Temperature Applications. Journal of the Electrochemical Society, 2016, 163, C752-C758.	2.9	25
117	Improved Microstructures and Mechanical Properties of 2024 Aluminum Alloy Produced by a Reciprocating Extrusion Method. Materials Transactions, JIM, 1999, 40, 233-241.	0.9	24
118	Microstructure and Mechanical Performance of Brandâ€New Al _{0.3} CrFe _{1.5} MnNi _{0.5} Highâ€Entropy Alloys. Advanced Engineering Materials, 2009, 11, 788-794.	3.5	23
119	Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties. AIP Advances, 2011, 1, .	1.3	23
120	New TiC/Co1.5CrFeNi1.5Ti0.5 Cermet with Slow TiC Coarsening During Sintering. Jom, 2014, 66, 2050-2056.	1.9	22
121	Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys. Materials Chemistry and Physics, 2009, 118, 354-361.	4.0	21
122	Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Scientific Reports, 2020, 10, 12163.	3.3	21
123	Damping behavior of in situ Al–(graphite, Al4C3) composites produced by reciprocating extrusion. Journal of Materials Research, 2001, 16, 1372-1380.	2.6	20
124	Effects of the carbon-to-nitrogen ratio on the microstructure and properties of (CrNbSiTiZr)C N high-entropy carbonitride films. Materials Chemistry and Physics, 2022, 277, 125374.	4.0	18
125	A novel process for fabricating electrical contact SnO2/Ag composites by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2441-2447.	2.2	17
126	Microstructural evolution and superplasticity of Al-5.8Mg-0.23Mn alloys processed by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2225-2234.	2.2	17

#	Article	IF	Citations
127	Microstructures and Mechanical Performance of Plasma-Nitrided Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2390-2400.	2.2	17
128	High-temperature shape memory properties of Cu15Ni35Ti25Hf12.5Zr12.5 high-entropy alloy. Journal of Materials Research and Technology, 2021, 14, 1235-1242.	5.8	17
129	Microstructures and tensile properties of an A1-12 wt pct Si alloy produced by reciprocating extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2503-2512.	2.2	16
130	Different lattice distortion effects on the tensile properties of Ni-W dilute solutions and CrFeNi and CoCrFeMnNi concentrated solutions. Acta Materialia, 2021, 221, 117399.	7.9	16
131	Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy. Applied Physics Letters, 2009, 95, 241905.	3.3	15
132	Hyperfine splitting from magnetic boride domains embedded in Fe–Co–Ni–Al–B–Si alloy. Applied Physics Letters, 2006, 89, 182503.	3.3	14
133	The improved microstructures and properties of 7075 alloys produced by a water-cooling centrifugal casting method. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 1933-1944.	2.2	13
134	Atomic-Scale Observation on the Nucleation and Growth of Displacement-Activated Palladium Catalysts and Electroless Copper Plating. Electrochemical and Solid-State Letters, 2005, 8, C114.	2.2	13
135	Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms. Journal of Materials Science and Technology, 2022, 114, 191-205.	10.7	13
136	Overview of High-Entropy Alloys. , 2016, , 1-19.		11
137	Physical Metallurgy., 2016, , 51-113.		11
138	TiFeCoNi oxide thin film $\hat{a} \in A$ new composition with extremely low electrical resistivity at room temperature. Scripta Materialia, 2011, 64, 173-176.	5.2	10
139	ZnO quantum dots decorated on optimized carbon nanotube intramolecular junctions exhibit superior field emission properties. RSC Advances, 2016, 6, 60877-60887.	3.6	10
140	Strength through high slip-plane density. Science, 2021, 374, 940-941.	12.6	10
141	The microstructures and properties of an al- 12 wt pct. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 2313-2321.	1.4	9
142	A study of the microstructures and properties of an A390.0 aluminium alloy produced by the layer deposition process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 165, 157-165.	5.6	8
143	Carbon Encapsulation of High Entropy Alloy Nanoparticles with Extraordinary Coercivity and Saturation at Room Temperature. Particle and Particle Systems Characterization, 2020, 37, 2000137.	2.3	8
144	High entropy alloy mediated growth of graphene. CrystEngComm, 2014, 16, 6187-6194.	2.6	7

#	Article	IF	CITATIONS
145	Elemental effects on the oxidation of refractory compositionally complex alloys. International Journal of Refractory Metals and Hard Materials, 2022, 108, 105918.	3.8	7
146	The Correlation of Fracture Toughness and Transgranular Fracture in Al-5.6% Zn-2.5% Mg Alloys with Small Additions of Fe. Transactions of the Japan Institute of Metals, 1986, 27, 504-511.	0.5	6
147	Effect of Mo on the Mechanical and Corrosion Behaviors in Non-Equal Molar AlCrFeMnNi BCC High-Entropy Alloys. Materials, 2022, 15, 751.	2.9	6
148	Coreâ€Shelled MCMBâ€Li ₄ Ti ₅ O ₁₂ Anode Material for Lithiumâ€ion Batteries. Journal of the Chinese Chemical Society, 2012, 59, 1206-1210.	1.4	5
149	Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres. Nanoscale Research Letters, 2014, 9, 307.	5.7	5
150	Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test. Intermetallics, 2020, 118, 106635.	3.9	5
151	High-Entropy Coatings. , 2016, , 469-491.		4
152	Tailoring Ferrimagnetic Transition Temperatures, Coercivity Fields, and Saturation Magnetization by Modulating Mn Concentration in (CoCrFeNi)1 \hat{a} °xMnx High-Entropy Alloys. Frontiers in Materials, 2022, 9, .	2.4	4
153	Mechanical behaviors of chromium- or niobium-modified Ni47.5Al25Fe27.5 alloy at elevated temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 175-184.	2.2	3
154	Potential Applications and Prospects. , 2016, , 493-512.		3
155	Microstructure evolution in high-pressure phase transformations of CrFeNi and CoCrFeMnNi alloys. Journal of Alloys and Compounds, 2022, 918, 165383.	5 . 5	3
156	Functional Properties., 2016,, 237-265.		2
157	Electron ballistic characteristic optimization in individual MWCNT by oxygen plasma treatment. RSC Advances, 2016, 6, 107977-107983.	3.6	2
158	Low-resistivity oxides in Ti <i></i> FeCoNi thin films after vacuum annealing. Surface Engineering, 2018, 34, 667-673.	2.2	2
159	High-Entropy Alloys: Overview., 2022,, 294-307.		2
160	Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing. Materials, 2017, 10, 1141.	2.9	1
161	Characterization of Ga-doped ZnO nanowires grown by thermal chemical vapor deposition. , 2008, , .		0
162	Phase and structure development of spontaneously ambient-grown ZnO·xH ₂ O and TiO ₂ ·xH ₂ O nanostructures towards oxide single crystals. RSC Advances, 2015, 5, 35061-35069.	3.6	0

ARTICLE IF CITATIONS

163 High-Entropy Coatings., 2022,, 558-568. 0