Rikhia Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11121297/publications.pdf

Version: 2024-02-01

1			567281	5	580821
	32	1,363	15		25
	papers	citations	h-index		g-index
	33	33	33		1800
	all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Cellular distribution of mutations and association with disease risk inÂLangerhans cell histiocytosis without <i>BRAF</i> V600E. Blood Advances, 2022, 6, 4901-4904.	5.2	4
2	Overcoming T-cell exhaustion in LCH: PD-1 blockade and targeted MAPK inhibition are synergistic in a mouse model of LCH. Blood, 2021, 137, 1777-1791.	1.4	25
3	BRAFV600E-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nature Medicine, 2021, 27, 851-861.	30.7	38
4	IFN- \hat{l}^3 signature in the plasma proteome distinguishes pediatric hemophagocytic lymphohistiocytosis from sepsis and SIRS. Blood Advances, 2021, 5, 3457-3467.	5.2	23
5	MAP-Kinase-Driven Hematopoietic Neoplasms: A Decade of Progress in the Molecular Age. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a034892.	6.2	17
6	<i>BRAF</i> V600E vs cell of origin: what governs LCH?. Blood, 2021, 138, 1203-1204.	1.4	1
7	BRAFV 600E or mutant MAP2K1 human CD34+ cells establish Langerhans cell–like histiocytosis in immune-deficient mice. Blood Advances, 2020, 4, 4912-4917.	5.2	6
8	Defining the Inflammatory Plasma Proteome in Pediatric Hodgkin Lymphoma. Cancers, 2020, 12, 3603.	3.7	6
9	Circulating CD1c+ myeloid dendritic cells are potential precursors to LCH lesion CD1a+CD207+ cells. Blood Advances, 2020, 4, 87-99.	5.2	25
10	The ''Gatekeeper'' Mutation T315I in BCR/ABL Confers Additional Oncogenic Activities to Philadelphia Chromosome Positive Leukemia. Blood, 2019, 134, 5196-5196.	1.4	2
11	Blocking MAPK Activation and Immune Checkpoints Reverse Immune Dysfunction and Reduce Disease in a Mouse Model of LCH. Blood, 2019, 134, 3602-3602.	1.4	O
12	TCR Repertoire Clonality Analysis and Transcriptome Analyses of Immune Infiltrates in Patients with Langerhans Cell Histiocytosis Can Define Prognostic Biomarkers for Future Therapeutic Development. Blood, 2019, 134, 3601-3601.	1.4	0
13	Comprehensive Cell Specific Transcriptome Profiling of a Pediatric Hodgkin Lymphoma Cohort. Blood, 2019, 134, 2773-2773.	1.4	O
14	CNS Langerhans cell histiocytosis: Common hematopoietic origin for LCHâ€associated neurodegeneration and mass lesions. Cancer, 2018, 124, 2607-2620.	4.1	73
15	RAF/MEK/extracellular signal–related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. Journal of Experimental Medicine, 2018, 215, 319-336.	8.5	58
16	Inherited Genetic Risk Factors and Langerhans Cell Histiocytosis Relapse Events. Blood, 2018, 132, 4278-4278.	1.4	0
17	Whole Exome Analysis Reveals Key Genomic Differences between Sporadic and Endemic Pediatric Burkitt Lymphoma. Blood, 2018, 132, 4117-4117.	1.4	O
18	Evaluation of maternal and perinatal characteristics on childhood lymphoma risk: A populationâ€based caseâ€control study. Pediatric Blood and Cancer, 2017, 64, e26321.	1.5	7

#	Article	IF	CITATIONS
19	p53 Nongenotoxic Activation and mTORC1 Inhibition Lead to Effective Combination for Neuroblastoma Therapy. Clinical Cancer Research, 2017, 23, 6629-6639.	7.0	23
20	A genome-wide association study of LCH identifies a variant in SMAD6 associated with susceptibility. Blood, 2017, 130, 2229-2232.	1.4	15
21	New somatic BRAF splicing mutation in Langerhans cell histiocytosis. Molecular Cancer, 2017, 16, 115.	19.2	37
22	Activating <i>MAPK1</i> (ERK2) mutation in an aggressive case of disseminated juvenile xanthogranuloma. Oncotarget, 2017, 8, 46065-46070.	1.8	24
23	Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood, 2016, 128, 2533-2537.	1.4	122
24	Inflammatory Plasma Proteins Predict Disease Severity and Response to Therapy in Patients with LCH. Blood, 2015, 126, 4072-4072.	1.4	0
25	A Genome-Wide Assessment of Inherited Genetic Variants and the Risk of Langerhans Cell Histiocytosis. Blood, 2015, 126, 4059-4059.	1.4	0
26	<i>BRAF-V600E</i> expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. Journal of Experimental Medicine, 2014, 211, 669-683.	8.5	346
27	Differentiating Skin-Limited and Multisystem Langerhans CellÂHistiocytosis. Journal of Pediatrics, 2014, 165, 990-996.	1.8	77
28	Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood, 2014, 124, 3007-3015.	1.4	352
29	Mutually Exclusive Recurrent Somatic Mutations in MAP2K1 and BRAF Support a Central Role for ERK Activation in LCH Pathogenesis. Blood, 2014, 124, 5587-5587.	1.4	2
30	Robust and cost effective expansion of human regulatory T cells highly functional in a xenograft model of graft-versus-host disease. Haematologica, 2013, 98, 533-537.	3.5	30
31	Plasma Biomarker Profiling In Langerhans Cell Histiocytosis: Risk-Stratifying The Inflammatory Storm. Blood, 2013, 122, 2854-2854.	1.4	0
32	Changes in Chemokine Receptor Expression of Regulatory T Cells After Ex Vivo Culture. Journal of Immunotherapy, 2012, 35, 329-336.	2.4	9