
Remco Sprangers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1112098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails. Molecular Cell, 2016, 61, 247-259.	9.7	120
2	The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO Journal, 2012, 31, 279-290.	7.8	103
3	Inâ€Vitro Reconstitution of a Cellular Phaseâ€Transition Process that Involves the mRNA Decapping Machinery. Angewandte Chemie - International Edition, 2014, 53, 7354-7359.	13.8	96
4	Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. Progress in Nuclear Magnetic Resonance Spectroscopy, 2020, 116, 56-84.	7.5	96
5	A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping. Nucleic Acids Research, 2017, 45, 6911-6922.	14.5	74
6	Methyl groups as NMR probes for biomolecular interactions. Current Opinion in Structural Biology, 2015, 35, 60-67.	5.7	70
7	A general method for rapid and cost-efficient large-scale production of 5′ capped RNA. Rna, 2016, 22, 1454-1466.	3.5	70
8	Changes in conformational equilibria regulate the activity of the Dcp2 decapping enzyme. Proceedings of the United States of America, 2017, 114, 6034-6039.	7.1	45
9	Solidâ€State NMR H–N–(C)–H and H–N–C–C 3D/4D Correlation Experiments for Resonance Assign of Large Proteins. ChemPhysChem, 2017, 18, 2697-2703.	ment 2.1	43
10	The Archaeal Exosome: Identification and Quantification of Siteâ€Specific Motions That Correlate with Cap and RNA Binding. Angewandte Chemie - International Edition, 2013, 52, 8312-8316.	13.8	28
11	An excess of catalytically required motions inhibits the scavenger decapping enzyme. Nature Chemical Biology, 2015, 11, 697-704.	8.0	28
12	Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Nature Communications, 2019, 10, 4536.	12.8	27
13	The <i>S. pombe</i> mRNA decapping complex recruits cofactors and an Edc1-like activator through a single dynamic surface. Rna, 2016, 22, 1360-1372.	3.5	26
14	Dcp2: an mRNA decapping enzyme that adopts many different shapes and forms. Current Opinion in Structural Biology, 2019, 59, 115-123.	5.7	22
15	Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. Nature Communications, 2021, 12, 2748.	12.8	22
16	The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Research, 2016, 44, 2962-2973.	14.5	20
17	Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proceedings of the United States of America, 2017, 114, 3933-3938.	7.1	18
18	The Rrp4–exosome complex recruits and channels substrate RNA by a unique mechanism. Nature Chemical Biology, 2017, 13, 522-528.	8.0	18

#	Article	IF	CITATIONS
19	A suite of 19F based relaxation dispersion experiments to assess biomolecular motions. Journal of Biomolecular NMR, 2020, 74, 753-766.	2.8	18
20	Structural basis for the activation of the DEAD-box RNA helicase DbpA by the nascent ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
21	Molecular basis of the selective processing of short mRNA substrates by the DcpS mRNA decapping enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19237-19244.	7.1	11
22	High-pressure NMR measurements provide insights into the different structural states that proteins can adopt. Biophysical Journal, 2021, 120, 749-751.	0.5	2
23	The Sum Is More Than The Parts: Crystal And Solution Data Reveal That The PIDDosome Core Complex Is a Dynamic Assembly. Journal of Molecular Biology, 2015, 427, 715-717.	4.2	1