
Mario C Foti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11119043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant Activity of Essential Oils. Journal of Agricultural and Food Chemistry, 2013, 61, 10835-10847.	5.2	563
2	Electron-Transfer Reaction of Cinnamic Acids and Their Methyl Esters with the DPPH• Radical in Alcoholic Solutions. Journal of Organic Chemistry, 2004, 69, 2309-2314.	3.2	516
3	Use and Abuse of the DPPH [•] Radical. Journal of Agricultural and Food Chemistry, 2015, 63, 8765-8776.	5.2	248
4	Antioxidant properties of phenols. Journal of Pharmacy and Pharmacology, 2010, 59, 1673-1685.	2.4	243
5	Naphthalene Diols:Â A New Class of Antioxidants Intramolecular Hydrogen Bonding in Catechols, Naphthalene Diols, and Their Aryloxyl Radicals. Journal of Organic Chemistry, 2002, 67, 5190-5196.	3.2	154
6	Reaction of Phenols with the 2,2-Diphenyl-1-picrylhydrazyl Radical. Kinetics and DFT Calculations Applied To Determine ArO-H Bond Dissociation Enthalpies and Reaction Mechanism. Journal of Organic Chemistry, 2008, 73, 9270-9282.	3.2	148
7	Mechanism of Inhibition of Lipid Peroxidation by Î ³ -Terpinene, an Unusual and Potentially Useful Hydrocarbon Antioxidant. Journal of Agricultural and Food Chemistry, 2003, 51, 2758-2765.	5.2	142
8	The Role of Hydrogen Bonding on the H-Atom-Donating Abilities of Catechols and Naphthalene Diols and on a Previously Overlooked Aspect of Their Infrared Spectra. Journal of the American Chemical Society, 2002, 124, 12881-12888.	13.7	99
9	Kinetics of the Oxidation of Quercetin by 2,2-Diphenyl-1-picrylhydrazyl (dpph ^{•}). Organic Letters, 2011, 13, 4826-4829.	4.6	66
10	Non-phenolic radical-trapping antioxidants. Journal of Pharmacy and Pharmacology, 2010, 61, 1435-1448.	2.4	59
11	Kinetic and thermodynamic parameters for the equilibrium reactions of phenols with the dpph? radical. Chemical Communications, 2006, , 3252.	4.1	47
12	Influence of "Remote―Intramolecular Hydrogen Bonds on the Stabilities of Phenoxyl Radicals and Benzyl Cations. Journal of Organic Chemistry, 2010, 75, 4434-4440.	3.2	43
13	Antiâ€angiogenic effect of quercetin and its 8â€methyl pentamethyl ether derivative in human microvascular endothelial cells. Journal of Cellular and Molecular Medicine, 2019, 23, 6565-6577.	3.6	35
14	New Insight into Solvent Effects on theFormal HOO. + HOO. Reaction. Chemistry - A European Journal, 2005, 11, 1942-1948.	3.3	33
15	Proton–electron transfer pathways in the reactions of peroxyl and dpph˙ radicals with hydrogen-bonded phenols. Chemical Communications, 2012, 48, 11904.	4.1	33
16	Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. European Journal of Pharmaceutical Sciences, 2017, 101, 56-65.	4.0	20
17	Biopolyphenolics as antioxidants: Studies under an Indo-Italian CSIR-CNR project. Pure and Applied Chemistry, 2005, 77, 91-101.	1.9	16
18	Coupling and fast decarboxylation of aryloxyl radicals of 4-hydroxycinnamic acids with formation of stable p-quinomethanes. Tetrahedron, 2006, 62, 1536-1547.	1.9	16

Mario C Foti

#	Article	IF	CITATIONS
19	Effect of organic co-solvents in the evaluation of the hydroxyl radical scavenging activity by the 2-deoxyribose degradation assay: The paradigmatic case of α-lipoic acid. Biophysical Chemistry, 2017, 220, 1-6.	2.8	15
20	Solvent effects on the activation parameters of the reaction between an αâ€ŧocopherol analogue and dpph [•] : The role of Hâ€bonded complexes. International Journal of Chemical Kinetics, 2012, 44, 524-531.	1.6	12
21	Unexpected Superoxide Dismutase Antioxidant Activity of Ferric Chloride in Acetonitrile. Journal of Organic Chemistry, 2003, 68, 9162-9165.	3.2	11
22	A Meta Effect in Nonphotochemical Processes:  The Homolytic Chemistry of <i>m</i> -Methoxyphenol. Journal of Organic Chemistry, 2008, 73, 2408-2411.	3.2	11
23	Kinetics of curcumin oxidation by 2,2-diphenyl-1-picrylhydrazyl (DPPHË™): an interesting case of separated coupled proton–electron transfer. Organic and Biomolecular Chemistry, 2016, 14, 8331-8337.	2.8	11
24	Unveiling the chemistry behind bromination of quercetin: the â€~violet chromogen'. Tetrahedron Letters, 2014, 55, 1602-1607.	1.4	8
25	Absolute rate constants and transient intermediates in the free-radical-induced peroxidation of γ-terpinene, an unusual hydrocarbon antioxidant. New Journal of Chemistry, 2003, 27, 1563-1567.	2.8	7
26	Solvent-dependent release of bromine from bromoquercetins. Tetrahedron Letters, 2014, 55, 4359-4365.	1.4	3
27	Singlet oxygen quenching- and chain-breaking antioxidant-properties of a quercetin dimer able to prevent age-related macular degeneration. Biophysical Chemistry, 2018, 243, 17-23.	2.8	3
28	Evaluation of the radical scavenging activity of some representative isoprenoid and aromatic cytokinin ribosides (N ⁶ -substituted adenosines) by <i>inÂvitro</i> chemical assays. Natural Product Research, 2022, 36, 6443-6447.	1.8	1