Dennis P Wall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11118622/publications.pdf Version: 2024-02-01

DENNIS D WALL

#	Article	IF	CITATIONS
1	Classifying Autism From Crowdsourced Semistructured Speech Recordings: Machine Learning Model Comparison Study. JMIR Pediatrics and Parenting, 2022, 5, e35406.	1.6	21
2	ldentification of Social Engagement Indicators Associated With Autism Spectrum Disorder Using a Game-Based Mobile App: Comparative Study of Gaze Fixation and Visual Scanning Methods. Journal of Medical Internet Research, 2022, 24, e31830.	4.3	23
3	Evaluation of an artificial intelligence-based medical device for diagnosis of autism spectrum disorder. Npj Digital Medicine, 2022, 5, 57.	10.9	29
4	Crowdsourced privacy-preserved feature tagging of short home videos for machine learning ASD detection. Scientific Reports, 2021, 11, 7620.	3.3	26
5	Children with Autism and Their Typically Developing Siblings Differ in Amplicon Sequence Variants and Predicted Functions of Stool-Associated Microbes. MSystems, 2021, 6, .	3.8	16
6	Estimating sequencing error rates using families. BioData Mining, 2021, 14, 27.	4.0	9
7	Training Affective Computer Vision Models by Crowdsourcing Soft-Target Labels. Cognitive Computation, 2021, 13, 1363-1373.	5.2	16
8	Selection of trustworthy crowd workers for telemedical diagnosis of pediatric autism spectrum disorder. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2021, 26, 14-25.	0.7	4
9	A Mobile Game Platform for Improving Social Communication in Children with Autism: A Feasibility Study. Applied Clinical Informatics, 2021, 12, 1030-1040.	1.7	23
10	Longitudinal study of stool-associated microbial taxa in sibling pairs with and without autism spectrum disorder. ISME Communications, 2021, 1, .	4.2	3
11	A Mobile Game for Automatic Emotion-Labeling of Images. IEEE Transactions on Games, 2020, 12, 213-218.	1.4	48
12	Data-Driven Diagnostics and the Potential of Mobile Artificial Intelligence for Digital Therapeutic Phenotyping in Computational Psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 759-769.	1.5	62
13	Feature replacement methods enable reliable home video analysis for machine learning detection of autism. Scientific Reports, 2020, 10, 21245.	3.3	27
14	Game theoretic centrality: a novel approach to prioritize disease candidate genes by combining biological networks with the Shapley value. BMC Bioinformatics, 2020, 21, 356.	2.6	8
15	Precision Telemedicine through Crowdsourced Machine Learning: Testing Variability of Crowd Workers for Video-Based Autism Feature Recognition. Journal of Personalized Medicine, 2020, 10, 86.	2.5	37
16	Toward Continuous Social Phenotyping: Analyzing Gaze Patterns in an Emotion Recognition Task for Children With Autism Through Wearable Smart Glasses. Journal of Medical Internet Research, 2020, 22, e13810.	4.3	28
17	Feature Selection and Dimension Reduction of Social Autism Data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2020, 25, 707-718.	0.7	10
18	Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell, 2019, 178, 850-866.e26.	28.9	326

DENNIS P WALL

#	Article	IF	CITATIONS
19	Labeling images with facial emotion and the potential for pediatric healthcare. Artificial Intelligence in Medicine, 2019, 98, 77-86.	6.5	78
20	Coalitional Game Theory Facilitates Identification of Non-Coding Variants Associated With Autism. Biomedical Informatics Insights, 2019, 11, 117822261983285.	4.6	4
21	Effect of Wearable Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder. JAMA Pediatrics, 2019, 173, 446.	6.2	121
22	Superpower Glass. GetMobile (New York, N Y), 2019, 23, 35-38.	1.0	30
23	Guess What?. Journal of Healthcare Informatics Research, 2019, 3, 43-66.	7.6	50
24	Identification and Quantification of Gaps in Access to Autism Resources in the United States: An Infodemiological Study. Journal of Medical Internet Research, 2019, 21, e13094.	4.3	46
25	Feasibility Testing of a Wearable Behavioral Aid for Social Learning in Children with Autism. Applied Clinical Informatics, 2018, 09, 129-140.	1.7	55
26	Exploratory study examining the at-home feasibility of a wearable tool for social-affective learning in children with autism. Npj Digital Medicine, 2018, 1, 32.	10.9	73
27	Machine learning approach for early detection of autism by combining questionnaire and home video screening. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1000-1007.	4.4	111
28	Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nature Genetics, 2017, 49, 504-510.	21.4	298
29	MC-GenomeKey: a multicloud system for the detection and annotation of genomic variants. BMC Bioinformatics, 2017, 18, 49.	2.6	10
30	Human Genome Sequencing at the Population Scale: A Primer on High-Throughput DNA Sequencing and Analysis. American Journal of Epidemiology, 2017, 186, 1000-1009.	3.4	63
31	Cross-disorder comparative analysis of comorbid conditions reveals novel autism candidate genes. BMC Genomics, 2017, 18, 315.	2.8	24
32	The GapMap project: a mobile surveillance system to map diagnosed autism cases and gaps in autism services globally. Molecular Autism, 2017, 8, 55.	4.9	7
33	Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Molecular Autism, 2017, 8, 65.	4.9	71
34	GapMap: Enabling Comprehensive Autism Resource Epidemiology. JMIR Public Health and Surveillance, 2017, 3, e27.	2.6	6
35	The Quantified Brain: A Framework for Mobile Device-Based Assessment of Behavior and Neurological Function. Applied Clinical Informatics, 2016, 07, 290-298.	1.7	15
36	Can we accelerate autism discoveries through crowdsourcing?. Research in Autism Spectrum Disorders, 2016, 32, 80-83.	1.5	11

DENNIS P WALL

#	Article	IF	CITATIONS
37	A research roadmap for next-generation sequencing informatics. Science Translational Medicine, 2016, 8, 335ps10.	12.4	37
38	A practical approach to real-time neutral feature subtraction for facial expression recognition. , 2016, , .		17
39	Clinical Evaluation of a Novel and Mobile Autism Risk Assessment. Journal of Autism and Developmental Disorders, 2016, 46, 1953-1961.	2.7	56
40	Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints. PLoS ONE, 2016, 11, e0157937.	2.5	24
41	Rising interdisciplinary collaborations refine our understanding of autisms and give hope to more personalized solutions. Personalized Medicine, 2015, 12, 359-369.	1.5	1
42	Scalable and cost-effective NGS genotyping in the cloud. BMC Medical Genomics, 2015, 8, 64.	1.5	19
43	Identification of Human Neuronal Protein Complexes Reveals Biochemical Activities and Convergent Mechanisms of Action in Autism Spectrum Disorders. Cell Systems, 2015, 1, 361-374.	6.2	42
44	Translational Meta-analytical Methods to Localize the Regulatory Patterns of Neurological Disorders in the Human Brain. AMIA Annual Symposium proceedings, 2015, 2015, 2073-82.	0.2	0
45	COSMOS: Python library for massively parallel workflows. Bioinformatics, 2014, 30, 2956-2958.	4.1	23
46	A framework for the interpretation of de novo mutation in human disease. Nature Genetics, 2014, 46, 944-950.	21.4	943
47	A literature search tool for intelligent extraction of disease-associated genes. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 399-405.	4.4	13
48	The Potential of Accelerating Early Detection of Autism through Content Analysis of YouTube Videos. PLoS ONE, 2014, 9, e93533.	2.5	54
49	Systems Biology as a Comparative Approach to Understand Complex Gene Expression in Neurological Diseases. Behavioral Sciences (Basel, Switzerland), 2013, 3, 253-272.	2.1	23
50	Cloud Computing for Comparative Genomics with Windows Azure Platform. Evolutionary Bioinformatics, 2012, 8, EBO.S9946.	1.2	9
51	Autworks: a cross-disease network biology application for Autism and related disorders. BMC Medical Genomics, 2012, 5, 56.	1.5	22
52	Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package. BMC Bioinformatics, 2012, 13, S22.	2.6	20
53	Use of Artificial Intelligence to Shorten the Behavioral Diagnosis of Autism. PLoS ONE, 2012, 7, e43855.	2.5	145
54	Using game theory to detect genes involved in Autism Spectrum Disorder. Top, 2011, 19, 121-129.	1.6	17

DENNIS P WALL

#	Article	IF	CITATIONS
55	Biomedical Cloud Computing With Amazon Web Services. PLoS Computational Biology, 2011, 7, e1002147.	3.2	110
56	Cloud computing for comparative genomics. BMC Bioinformatics, 2010, 11, 259.	2.6	103
57	Genotator: A disease-agnostic tool for genetic annotation of disease. BMC Medical Genomics, 2010, 3, 50.	1.5	47
58	Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup. Evolutionary Bioinformatics, 2010, 6, EBO.S6259.	1.2	41
59	Phylogeny of the Calymperaceae with a rank-free systematic treatment. Bryologist, 2007, 110, 46-73.	0.6	12
60	Ortholog Detection Using the Reciprocal Smallest Distance Algorithm. Methods in Molecular Biology, 2007, 396, 95-110.	0.9	37
61	Roundup: a multi-genome repository of orthologs and evolutionary distances. Bioinformatics, 2006, 22, 2044-2046.	4.1	96
62	ORIGIN AND RAPID DIVERSIFICATION OF A TROPICAL MOSS. Evolution; International Journal of Organic Evolution, 2005, 59, 1413-1424.	2.3	37
63	Converging on a general model of protein evolution. Trends in Biotechnology, 2005, 23, 485-487.	9.3	25
64	Conservation of theRB1gene in human and primates. Human Mutation, 2005, 25, 396-409.	2.5	18
65	ORIGIN AND RAPID DIVERSIFICATION OF A TROPICAL MOSS. Evolution; International Journal of Organic Evolution, 2005, 59, 1413.	2.3	Ο
66	Functional genomic analysis of the rates of protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5483-5488.	7.1	255
67	Adjusting for Selection on Synonymous Sites in Estimates of Evolutionary Distance. Molecular Biology and Evolution, 2005, 22, 174-177.	8.9	57
68	Coevolution of gene expression among interacting proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9033-9038.	7.1	221
69	Evolutionary Patterns of Codon Usage in the Chloroplast Gene rbc L. Journal of Molecular Evolution, 2003, 56, 673-688.	1.8	17
70	A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evolutionary Biology, 2003, 3, 11.	3.2	152
71	Use of the nuclear gene glyceraldehyde 3-phosphate dehydrogenase for phylogeny reconstruction of recently diverged lineages in Mitthyridium (Musci: Calymperaceae). Molecular Phylogenetics and Evolution, 2002, 25, 10-26.	2.7	26
72	Phylogenetic Relationships Within the Haplolepideous Mosses. Bryologist, 2000, 103, 257-276.	0.6	60