List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1111194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant Journal, 2010, 64, 204-214.	5.7	591
2	WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 2013, 64, 5085-5097.	4.8	277
3	Identification of a Biosynthetic Gene Cluster in Rice for Momilactones. Journal of Biological Chemistry, 2007, 282, 34013-34018.	3.4	258
4	Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant Journal, 2014, 79, 659-678.	5.7	233
5	Identification of rice <i>Allene Oxide Cyclase</i> mutants and the function of jasmonate for defence against <scp><i>Magnaporthe oryzae</i></scp> . Plant Journal, 2013, 74, 226-238.	5.7	204
6	Phytoalexin Accumulation in the Interaction Between Rice and the Blast Fungus. Molecular Plant-Microbe Interactions, 2010, 23, 1000-1011.	2.6	158
7	Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta, 2008, 227, 517-526.	3.2	141
8	OsTGAP1, a bZIP Transcription Factor, Coordinately Regulates the Inductive Production of Diterpenoid Phytoalexins in Rice. Journal of Biological Chemistry, 2009, 284, 26510-26518.	3.4	140
9	Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8, 1031.	12.8	138
10	Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Molecular Biology, 2007, 65, 177-187.	3.9	136
11	Jasmonates Induce Both Defense Responses and Communication in Monocotyledonous and Dicotyledonous Plants. Plant and Cell Physiology, 2015, 56, 16-27.	3.1	136
12	Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster. Journal of Biological Chemistry, 2012, 287, 6159-6168.	3.4	116
13	Diterpenoid phytoalexin factor, a <scp>bHLH</scp> transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant Journal, 2015, 84, 1100-1113.	5.7	103
14	WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. Plant Molecular Biology, 2014, 86, 171-183.	3.9	102
15	Purification and Identification of Naringenin 7-O-Methyltransferase, a Key Enzyme in Biosynthesis of Flavonoid Phytoalexin Sakuranetin in Rice. Journal of Biological Chemistry, 2012, 287, 19315-19325.	3.4	101
16	Overexpression of Phosphomimic Mutated OsWRKY53 Leads to Enhanced Blast Resistance in Rice. PLoS ONE, 2014, 9, e98737.	2.5	94
17	Genetic Evidence for the Role of Isopentenyl Diphosphate Isomerases in the Mevalonate Pathway and Plant Development in Arabidopsis. Plant and Cell Physiology, 2008, 49, 604-616.	3.1	90
18	Diterpene Phytoalexins Are Biosynthesized in and Exuded from the Roots of Rice Seedlings. Bioscience, Biotechnology and Biochemistry, 2008, 72, 562-567.	1.3	82

#	Article	IF	CITATIONS
19	Personalized assessment of craniosynostosis via statistical shape modeling. Medical Image Analysis, 2014, 18, 635-646.	11.6	82
20	Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. Plant Journal, 2016, 87, 293-304.	5.7	76
21	Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12472-12480.	7.1	73
22	Reverseâ€genetic approach to verify physiological roles of rice phytoalexins: characterization of a knockdown mutant of <i><scp>OsCPS4</scp></i> phytoalexin biosynthetic gene in rice. Physiologia Plantarum, 2014, 150, 55-62.	5.2	71
23	The Biosynthesis of Isoprenoids and the Mechanisms Regulating It in Plants. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1219-1225.	1.3	70
24	Analysis on Blast Fungus-Responsive Characters of a Flavonoid Phytoalexin Sakuranetin; Accumulation in Infected Rice Leaves, Antifungal Activity and Detoxification by Fungus. Molecules, 2014, 19, 11404-11418.	3.8	70
25	Digital facial dysmorphology for genetic screening: Hierarchical constrained local model using ICA. Medical Image Analysis, 2014, 18, 699-710.	11.6	70
26	Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. Journal of Plant Physiology, 2015, 173, 19-27.	3.5	70
27	The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana. Plant Molecular Biology, 2004, 55, 567-577.	3.9	69
28	Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochemistry, 2008, 69, 973-981.	2.9	66
29	Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Letters, 2004, 571, 182-186.	2.8	65
30	RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix–loop–helix protein. Biochemical and Biophysical Research Communications, 2004, 325, 857-863.	2.1	60
31	OsJAR1 Contributes Mainly to Biosynthesis of the Stress-Induced Jasmonoyl-Isoleucine Involved in Defense Responses in Rice. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1556-1564.	1.3	59
32	OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Scientific Reports, 2017, 7, 40175.	3.3	55
33	Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Scientific Reports, 2016, 6, 32537.	3.3	53
34	Noninvasive differential diagnosis of dental periapical lesions in coneâ€beam CT scans. Medical Physics, 2015, 42, 1653-1665.	3.0	45
35	Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. Journal of Plant Physiology, 2012, 169, 621-627.	3.5	39
36	Regulation of a Proteinaceous Elicitor-induced Ca2+ Influx and Production of Phytoalexins by a Putative Voltage-gated Cation Channel, OsTPC1, in Cultured Rice Cells. Journal of Biological Chemistry, 2012, 287, 9931-9939.	3.4	39

#	Article	IF	CITATIONS
37	Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC Plant Biology, 2019, 19, 563.	3.6	34
38	Preparation and Biological Activity of Molecular Probes to Identify and Analyze Jasmonic Acid-binding Proteins. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1461-1466.	1.3	33
39	Identification of Target Genes of the bZIP Transcription Factor OsTGAP1, Whose Overexpression Causes Elicitor-Induced Hyperaccumulation of Diterpenoid Phytoalexins in Rice Cells. PLoS ONE, 2014, 9, e105823.	2.5	33
40	Classifying shoulder implants in X-ray images using deep learning. Computational and Structural Biotechnology Journal, 2020, 18, 967-972.	4.1	33
41	Magnaporthe oryzae Glycine-Rich Secretion Protein, Rbf1 Critically Participates in Pathogenicity through the Focal Formation of the Biotrophic Interfacial Complex. PLoS Pathogens, 2016, 12, e1005921.	4.7	33
42	HpDTC1, a Stress-Inducible Bifunctional Diterpene Cyclase Involved in Momilactone Biosynthesis, Functions in Chemical Defence in the Moss Hypnum plumaeforme. Scientific Reports, 2016, 6, 25316.	3.3	31
43	Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles. Journal of Experimental Botany, 2015, 66, 369-376.	4.8	30
44	Using the random forest classifier to assess and predict student learning of Software Engineering Teamwork. , 2016, , .		30
45	OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice. Biochemical and Biophysical Research Communications, 2017, 486, 796-803.	2.1	28
46	Transcriptional regulation of the biosynthesis of phytoalexin: A lesson from specialized metabolites in rice. Plant Biotechnology, 2014, 31, 377-388.	1.0	27
47	Stress-induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumulation in rice. Protoplasma, 2013, 250, 241-249.	2.1	24
48	Analysis of tungsten film electrodeposited from a ZnCl2–NaCl–KCl melt. Electrochimica Acta, 2007, 53, 20-23.	5.2	23
49	Electrodeposition of metallic tungsten films in ZnCl2–NaCl–KCl–KF–WO3 melt at 250 C. Electrochimica Acta, 2007, 53, 24-27.	5.2	23
50	Effects of cytokinin on production of diterpenoid phytoalexins in rice. Journal of Pesticide Sciences, 2010, 35, 412-418.	1.4	23
51	Jasmonoyl- <scp>l</scp> -isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1934-1938.	1.3	23
52	MvaT Family Proteins Encoded on IncP-7 Plasmid pCAR1 and the Host Chromosome Regulate the Host Transcriptome Cooperatively but Differently. Applied and Environmental Microbiology, 2016, 82, 832-842.	3.1	23
53	OsTGAP1 is responsible for JAâ€inducible diterpenoid phytoalexin biosynthesis in rice roots with biological impacts on allelopathic interaction. Physiologia Plantarum, 2017, 161, 532-544.	5.2	23
54	Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Scientific Reports, 2021, 11, 6280.	3.3	23

#	Article	IF	CITATIONS
55	Effects of Three Different Nucleoid-Associated Proteins Encoded on IncP-7 Plasmid pCAR1 on Host Pseudomonas putida KT2440. Applied and Environmental Microbiology, 2015, 81, 2869-2880.	3.1	20
56	The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. Plant Molecular Biology, 2022, 109, 651-666.	3.9	19
57	Hierarchical Constrained Local Model Using ICA and Its Application to Down Syndrome Detection. Lecture Notes in Computer Science, 2013, 16, 222-229.	1.3	19
58	Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell, Tissue and Organ Culture, 2016, 127, 35-46.	2.3	18
59	Repetitive sequences in the lamprey mitochondrial DNA control region and speciation of Lethenteron. Gene, 2010, 465, 45-52.	2.2	16
60	Stereocontrolled total synthesis of (±)-3β-hydroxy-9β-pimara-7,15-diene, a putative biosynthetic intermediate of momilactones. Tetrahedron Letters, 2011, 52, 3212-3215.	1.4	16
61	<i>OsDCL1a</i> activation impairs phytoalexin biosynthesis and compromises disease resistance in rice. Annals of Botany, 2019, 123, 79-93.	2.9	15
62	<i>In planta</i> functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1021-1030.	1.3	14
63	Sensitivity and specificity of computer vision classification of eyelid photographs for programmatic trachoma assessment. PLoS ONE, 2019, 14, e0210463.	2.5	13
64	A Genome-Wide Survey of Genes Encoding Transcription Factors in the Japanese Pearl Oyster, Pinctada fucata: I. Homeobox Genes. Zoological Science, 2013, 30, 851.	0.7	12
65	MyoHMI: A low-cost and flexible platform for developing real-time human machine interface for myoelectric controlled applications. , 2016, , .		12
66	Structural similarities and differences in Hâ€< scp>NS family proteins revealed by the Nâ€ŧerminal structure of TurB in <i>Pseudomonas putida </i> <scp>KT</scp> 2440. FEBS Letters, 2016, 590, 3583-3594.	2.8	12
67	Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon. Biochemical and Biophysical Research Communications, 2016, 480, 402-408.	2.1	12
68	Oligomerization Mechanisms of an H-NS Family Protein, Pmr, Encoded on the Plasmid pCAR1 Provide a Molecular Basis for Functions of H-NS Family Members. PLoS ONE, 2014, 9, e105656.	2.5	12
69	Growth phase-dependent expression profiles of three vital H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440 and on the pCAR1 plasmid. BMC Microbiology, 2017, 17, 188.	3.3	11
70	Evolution of Labdane-Related Diterpene Synthases in Cereals. Plant and Cell Physiology, 2020, 61, 1850-1859.	3.1	11
71	Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. Plant Molecular Biology, 2022, 109, 595-609.	3.9	11
72	Spermidine, a polyamine, confers resistance to rice blast. Journal of Pesticide Sciences, 2016, 41, 79-82.	1.4	10

#	Article	IF	CITATIONS
73	Characterization of diterpene synthase genes in the wild rice species Oryza brachyatha provides evolutionary insight into rice phytoalexin biosynthesis. Biochemical and Biophysical Research Communications, 2018, 503, 1221-1227.	2.1	9
74	Divalent cations increase the conjugation efficiency of the incompatibility P-7 group plasmid pCAR1 among different Pseudomonas hosts. Microbiology (United Kingdom), 2018, 164, 20-27.	1.8	9
75	Promoter analysis of the rice stemar-13-ene synthase gene OsDTC2, which is involved in the biosynthesis of the phytoalexin oryzalexin S. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 678-683.	2.4	8
76	Variable interaction measures with random forest classifiers. , 2012, , .		8
77	Purification and partial characterization of the extradiol dioxygenase, 2′-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase, in the fluorene degradation pathway from <i>Rhodococcus</i> sp. strain DFA3. Bioscience, Biotechnology and Biochemistry, 2016, 80, 719-725.	1.3	8
78	Proteome and acylome analyses of the functional interaction network between the carbazoleâ€degradative plasmid pCAR1 and host <i>Pseudomonas putida</i> KT2440. Environmental Microbiology Reports, 2018, 10, 299-309.	2.4	8
79	Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. Plant Journal, 2022, 111, 1354-1367.	5.7	8
80	Comparisons of the transferability of plasmids pCAR1, pB10, R388, and NAH7 among <i>Pseudomonas putida</i> at different cell densities. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1020-1023.	1.3	7
81	Conjugative Selectivity of Plasmids Is Affected by Coexisting Recipient Candidates. MSphere, 2018, 3, .	2.9	7
82	Complete Genome Sequence of an Anaerobic Benzene-Degrading Bacterium, <i>Azoarcus</i> sp. Strain DN11. Microbiology Resource Announcements, 2019, 8, .	0.6	7
83	Effects of carbazoleâ€degradative plasmid <scp>pCAR1</scp> on biofilm morphology in <i>Pseudomonas putida</i> â€ <scp>KT</scp> 2440. Environmental Microbiology Reports, 2016, 8, 261-271.	2.4	6
84	Differential protein-protein binding affinities of H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440 and IncP-7 plasmid pCAR1. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1640-1646.	1.3	6
85	Biotransformation of Monocyclic Phenolic Compounds by Bacillus licheniformis TAB7. Microorganisms, 2020, 8, 26.	3.6	6
86	Thermophilic bacteria are potential sources of novel Rieske non-heme iron oxygenases. AMB Express, 2017, 7, 17.	3.0	5
87	Biochemical synthesis of uniformly 13C-labeled diterpene hydrocarbons and their bioconversion to diterpenoid phytoalexins in planta. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1176-1184.	1.3	5
88	Complete Genome Sequence of the Marine Carbazole-Degrading Bacterium Erythrobacter sp. Strain KY5. Microbiology Resource Announcements, 2018, 7, .	0.6	5
89	Complete Genome Sequence of <i>Thalassococcus</i> sp. Strain S3, a Marine <i>Roseobacter</i> Clade Member Capable of Degrading Carbazole. Microbiology Resource Announcements, 2019, 8, .	0.6	5
90	A Novel Small RNA on the Pseudomonas putida KT2440 Chromosome Is Involved in the Fitness Cost Imposed by IncP-1 Plasmid RP4. Frontiers in Microbiology, 2020, 11, 1328.	3.5	5

KAZUNORI OKADA

#	Article	IF	CITATIONS
91	Complete Genome Sequence of Bacillus licheniformis TAB7, a Compost-Deodorizing Strain with Potential for Plant Growth Promotion. Microbiology Resource Announcements, 2019, 8, .	0.6	4
92	H-NS Family Proteins Drastically Change Their Targets in Response to the Horizontal Transfer of the Catabolic Plasmid pCAR1. Frontiers in Microbiology, 2020, 11, 1099.	3.5	4
93	A Novel Gene Cluster Is Involved in the Degradation of Lignin-Derived Monoaromatics in Thermus oshimai JL-2. Applied and Environmental Microbiology, 2021, 87, .	3.1	4
94	A toxin–antitoxin system confers stability to the IncP-7 plasmid pCAR1. Gene, 2022, 812, 146068.	2.2	4
95	Classifiability criteria for refining of random walks segmentation. , 2008, , .		3
96	Constrained local model with independent component analysis and kernel density estimation: Application to down syndrome detection. , 2015, , .		3
97	Azoxystrobin amine: A novel azoxystrobin degradation product from Bacillus licheniformis strain TAB7. Chemosphere, 2021, 273, 129663.	8.2	3
98	The α- and β-Subunit Boundary at the Stem of the Mushroom-Like α ₃ β ₃ -Type Oxygenase Component of Rieske Non-Heme Iron Oxygenases Is the Rieske-Type Ferredoxin-Binding Site. Applied and Environmental Microbiology, 2022, 88, .	3.1	3
99	Robust Click-Point Linking: Matching Visually Dissimilar Local Regions. , 2007, , .		2
100	Directional mean shift and its application for topology classification of local 3D structures. , 2010, , .		2
101	Genome-wide screening of genes associated with momilactone B sensitivity in the fission yeast <i>Schizosaccharomyces pombe</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
102	Aerial (+)-borneol modulates root morphology, auxin signalling and meristematic activity in Arabidopsis roots. Biology Letters, 2022, 18, 20210629.	2.3	2
103	Functional kaurene-synthase-like diterpene synthases lacking a gamma domain are widely present in <i>Oryza</i> and related species. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1945-1952.	1.3	1
104	Deciphering OPDA Signaling Components in the Momilactone-Producing Moss. Frontiers in Plant Science, 2021, 12, 688565.	3.6	1
105	Title is missing!. Kagaku To Seibutsu, 2009, 47, 43-50.	0.0	0
106	Crystallization and preliminary X-ray diffraction analyses of the redox-controlled complex of terminal oxygenase and ferredoxin components in the Rieske nonhaem iron oxygenase carbazole 1,9a-dioxygenase. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1406-1409.	0.8	0
107	<i>Magnaporthe oryzae</i> : A tool for the molecular analysis of compatibility. Journal of Pesticide Sciences, 2009, 34, 335-338.	1.4	0

108 ä,ç‰æ**ç**䩋§å^ã,ã¦è¦<ã∰a£ãŸé^{~2}御物質ã[®]ç"Ÿå•̂æ^éºä¼åã,¯ãf©ã,¹ã,¿ãf¼. Kagaku To Seibutsu, 2021, 590,56-58. 0