Rongrong Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11108147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass. Biotechnology for Biofuels, 2017, 10, 41.	6.2	53
2	Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnology for Biofuels, 2017, 10, 125.	6.2	58
3	Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. Small, 2016, 12, 951-962.	10.0	30
4	Transforming Pristine Carbon Fiber Tows into High Performance Solid‣tate Fiber Supercapacitors. Advanced Materials, 2015, 27, 4895-4901.	21.0	193
5	Ternary Hybrids of Amorphous Nickel Hydroxide–Carbon Nanotubeâ€Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials, 2015, 25, 1063-1073.	14.9	288
6	A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon. Journal of Materials Chemistry A, 2015, 3, 7210-7214.	10.3	75
7	Combinatorial and high-throughput screening approaches for strain engineering. Applied Microbiology and Biotechnology, 2015, 99, 2093-2104.	3.6	28
8	Sulfur-induced chirality changes in single-walled carbon nanotube synthesis by ethanol chemical vapor deposition on a Co/SiO ₂ catalyst. Journal of Materials Chemistry A, 2015, 3, 3310-3319.	10.3	26
9	cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Applied Microbiology and Biotechnology, 2015, 99, 4533-4543.	3.6	28
10	Enhancing <i>E. coli</i> isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnology and Bioengineering, 2014, 111, 700-708.	3.3	47
11	Effect of depositing silver nanoparticles on BiVO ₄ in enhancing visible light photocatalytic inactivation of bacteria in water. Journal of Materials Chemistry A, 2014, 2, 6209-6217.	10.3	107
12	Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. Journal of Biotechnology, 2014, 173, 68-75.	3.8	31
13	Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon, 2014, 66, 134-143.	10.3	16
14	Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. Bioresource Technology, 2013, 130, 763-768.	9.6	86
15	Improving Ethanol Tolerance of Escherichia coli by Rewiring Its Global Regulator cAMP Receptor Protein (CRP). PLoS ONE, 2013, 8, e57628.	2.5	61
16	Improving Acetate Tolerance of Escherichia coli by Rewiring Its Global Regulator cAMP Receptor Protein (CRP). PLoS ONE, 2013, 8, e77422.	2.5	35
17	Ni ²⁺ -doped Zn _x Cd _{1â^'x} S photocatalysts from single-source precursors for efficient solar hydrogen production under visible light irradiation. Catalysis Science and Technology, 2012, 2, 581-588.	4.1	66
18	Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors. Electrochimica Acta, 2012, 78, 122-132.	5.2	44

Rongrong Jiang

#	Article	IF	CITATIONS
19	Specific Enzyme Immobilization Approaches and Their Application with Nanomaterials. Topics in Catalysis, 2012, 55, 1146-1156.	2.8	62
20	Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent (toluene) tolerance. Process Biochemistry, 2012, 47, 2152-2158.	3.7	17
21	Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579. Applied Microbiology and Biotechnology, 2012, 96, 1265-1273.	3.6	13
22	Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir, 2012, 28, 12364-12372.	3.5	498
23	Enhancing E. coli Tolerance towards Oxidative Stress via Engineering Its Global Regulator cAMP Receptor Protein (CRP). PLoS ONE, 2012, 7, e51179.	2.5	52
24	Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnology and Bioengineering, 2012, 109, 1165-1172.	3.3	52
25	Cobalt Phosphate–ZnO Composite Photocatalysts for Oxygen Evolution from Photocatalytic Water Oxidation. Industrial & Engineering Chemistry Research, 2012, 51, 9945-9951.	3.7	71
26	Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration. Applied Microbiology and Biotechnology, 2012, 94, 1233-1241.	3.6	24
27	Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Applied Microbiology and Biotechnology, 2012, 94, 1107-1117.	3.6	64
28	Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells. Electrochemistry Communications, 2012, 19, 13-16.	4.7	60
29	Nanoparticle-supported consecutive reactions catalyzed by alkyl hydroperoxide reductase. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 9-14.	1.8	10
30	How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors?. Energy and Environmental Science, 2011, 4, 4220.	30.8	119
31	Activity and stability comparison of immobilized NADH oxidase on multi-walled carbon nanotubes, carbon nanospheres, and single-walled carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 120-126.	1.8	34
32	Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. Journal of Hazardous Materials, 2011, 194, 162-168.	12.4	174
33	Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano, 2011, 5, 6971-6980.	14.6	2,384
34	Engineering of glycerol dehydrogenase for improved activity towards 1, 3-butanediol. Applied Microbiology and Biotechnology, 2010, 88, 117-124.	3.6	33
35	Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Journal of Biotechnology, 2010, 150, 57-63.	3.8	105
36	Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Applied Microbiology and Biotechnology, 2009, 84, 301-308.	3.6	50

#	Article	IF	CITATIONS
37	Production of bioactive human beta-defensin 5 and 6 in Escherichia coli by soluble fusion expression. Protein Expression and Purification, 2008, 61, 168-174.	1.3	50
38	The Crystal Structure of NAD(P)H Oxidase fromLactobacillus sanfranciscensis:Â Insights into the Conversion of O2into Two Water Molecules by the Flavoenzymeâ€,â€į. Biochemistry, 2006, 45, 9648-9659.	2.5	85
39	Comparison of Alkyl Hydroperoxide Reductase (AhpR) and Water-Forming NADH Oxidase fromLactococcus lactis ATCC 19435. Advanced Synthesis and Catalysis, 2005, 347, 1139-1146.	4.3	41
40	Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis. Tetrahedron: Asymmetry, 2004, 15, 2939-2944.	1.8	59