Paula Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11098907/publications.pdf

Version: 2024-02-01

65 papers 5,345 citations

34 h-index 65 g-index

65 all docs

65 docs citations

65 times ranked 5051 citing authors

#	Article	IF	CITATIONS
1	Effect of Human Papillomavirus 16/18 L1 Viruslike Particle Vaccine Among Young Women With Preexisting Infection. JAMA - Journal of the American Medical Association, 2007, 298, 743.	7.4	581
2	Reduced Prevalence of Oral Human Papillomavirus (HPV) 4 Years after Bivalent HPV Vaccination in a Randomized Clinical Trial in Costa Rica. PLoS ONE, 2013, 8, e68329.	2.5	387
3	Proof-of-Principle Evaluation of the Efficacy of Fewer Than Three Doses of a Bivalent HPV16/18 Vaccine. Journal of the National Cancer Institute, 2011, 103, 1444-1451.	6.3	274
4	Oral Human Papillomavirus in Healthy Individuals: A Systematic Review of the Literature. Sexually Transmitted Diseases, 2010, 37, 386-391.	1.7	249
5	Efficacy of fewer than three doses of an HPV-16/18 ASO4-adjuvanted vaccine: combined analysis of data from the Costa Rica Vaccine and PATRICIA trials. Lancet Oncology, The, 2015, 16, 775-786.	10.7	247
6	Human Papillomavirus Infection with Multiple Types: Pattern of Coinfection and Risk of Cervical Disease. Journal of Infectious Diseases, 2011, 203, 910-920.	4.0	245
7	HPV16 E7 Genetic Conservation Is Critical to Carcinogenesis. Cell, 2017, 170, 1164-1174.e6.	28.9	221
8	Durable Antibody Responses Following One Dose of the Bivalent Human Papillomavirus L1 Virus-Like Particle Vaccine in the Costa Rica Vaccine Trial. Cancer Prevention Research, 2013, 6, 1242-1250.	1.5	185
9	Efficacy of a bivalent HPV $16/18$ vaccine against anal HPV $16/18$ infection among young women: a nested analysis within the Costa Rica Vaccine Trial. Lancet Oncology, The, 2011 , 12 , 862 - 870 .	10.7	168
10	Present status of human papillomavirus vaccine development and implementation. Lancet Oncology, The, 2015, 16, e206-e216.	10.7	165
11	Epidemiological Study of Anti-HPV16/18 Seropositivity and Subsequent Risk of HPV16 and -18 Infections. Journal of the National Cancer Institute, 2010, 102, 1653-1662.	6.3	155
12	Cervicovaginal microbiome and natural history of HPVÂin a longitudinal study. PLoS Pathogens, 2020, 16, e1008376.	4.7	150
13	Rationale and design of a community-based double-blind randomized clinical trial of an HPV 16 and 18 vaccine in Guanacaste, Costa Rica. Vaccine, 2008, 26, 4795-4808.	3.8	145
14	Prevention of Persistent Human Papillomavirus Infection by an HPV16/18 Vaccine: A Community-Based Randomized Clinical Trial in Guanacaste, Costa Rica. Cancer Discovery, 2011, 1, 408-419.	9.4	143
15	Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. American Journal of Obstetrics and Gynecology, 2016, 215, 212.e1-212.e15.	1.3	108
16	Common Variants in Immune and DNA Repair Genes and Risk for Human Papillomavirus Persistence and Progression to Cervical Cancer. Journal of Infectious Diseases, 2009, 199, 20-30.	4.0	107
17	Common Genetic Variants and Risk for HPV Persistence and Progression to Cervical Cancer. PLoS ONE, 2010, 5, e8667.	2.5	104
18	Evidence for single-dose protection by the bivalent HPV vaccineâ€"Review of the Costa Rica HPV vaccine trial and future research studies. Vaccine, 2018, 36, 4774-4782.	3.8	103

#	Article	IF	CITATIONS
19	Multisite HPV16/18 Vaccine Efficacy Against Cervical, Anal, and Oral HPV Infection. Journal of the National Cancer Institute, 2016, 108, djv302.	6.3	92
20	Evaluation of Durability of a Single Dose of the Bivalent HPV Vaccine: The CVT Trial. Journal of the National Cancer Institute, 2020, 112, 1038-1046.	6.3	89
21	Cervical determinants of anal HPV infection and high-grade anal lesions in women: a collaborative pooled analysis. Lancet Infectious Diseases, The, 2019, 19, 880-891.	9.1	85
22	Behavioral/Lifestyle and Immunologic Factors Associated with HPV Infection among Women Older Than 45 Years. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 3044-3054.	2.5	80
23	Risk of miscarriage with bivalent vaccine against human papillomavirus (HPV) types 16 and 18: pooled analysis of two randomised controlled trials. BMJ: British Medical Journal, 2010, 340, c712-c712.	2.3	78
24	Comparison of Two PCR-Based Human Papillomavirus Genotyping Methods. Journal of Clinical Microbiology, 2008, 46, 3437-3445.	3.9	75
25	Comparison of the SPF ₁₀ -LiPA System to the Hybrid Capture 2 Assay for Detection of Carcinogenic Human Papillomavirus Genotypes among 5,683 Young Women in Guanacaste, Costa Rica. Journal of Clinical Microbiology, 2007, 45, 1447-1454.	3.9	74
26	A Comparison of Cervical and Vaginal Human Papillomavirus. Sexually Transmitted Diseases, 2007, 34, 849-855.	1.7	73
27	Durability of Protection Afforded by Fewer Doses of the HPV16/18 Vaccine: The CVT Trial. Journal of the National Cancer Institute, 2018, 110, 205-212.	6.3	71
28	Efficacy of the bivalent HPV vaccine against HPV 16/18-associated precancer: long-term follow-up results from the Costa Rica Vaccine Trial. Lancet Oncology, The, 2020, 21, 1643-1652.	10.7	54
29	Prevalence of and Risk Factors for Anal Human Papillomavirus Infection Among Young Healthy Women in Costa Rica. Journal of Infectious Diseases, 2012, 206, 1103-1110.	4.0	51
30	Prevalence of and Risk Factors for Oral Human Papillomavirus Among Young Women in Costa Rica. Journal of Infectious Diseases, 2013, 208, 1643-1652.	4.0	47
31	Evaluation of Type Replacement Following HPV16/18 Vaccination: Pooled Analysis of Two Randomized Trials. Journal of the National Cancer Institute, 2017, 109, djw300.	6.3	43
32	Durability of Cross-Protection by Different Schedules of the Bivalent HPV Vaccine: The CVT Trial. Journal of the National Cancer Institute, 2020, 112, 1030-1037.	6.3	42
33	HPV16 Seropositivity and Subsequent HPV16 Infection Risk in a Naturally Infected Population: Comparison of Serological Assays. PLoS ONE, 2013, 8, e53067.	2.5	39
34	Single Nucleotide Polymorphisms in the PRDX3 and RPS19 and Risk of HPV Persistence and Cervical Precancer/Cancer. PLoS ONE, 2012, 7, e33619.	2.5	37
35	Cross-protective vaccine efficacy of the bivalent HPV vaccine against HPV31 is associated with humoral immune responses. Human Vaccines and Immunotherapeutics, 2013, 9, 1399-1406.	3.3	35
36	Determinants of seropositivity among HPV-16/18 DNA positive young women. BMC Infectious Diseases, 2010, 10, 238.	2.9	34

#	Article	IF	CITATIONS
37	European Code against Cancer 4th Edition: Infections and Cancer. Cancer Epidemiology, 2015, 39, S120-S138.	1.9	34
38	Longâ€term risk of recurrent cervical human papillomavirus infection and precancer and cancer following excisional treatment. International Journal of Cancer, 2012, 131, 211-218.	5.1	29
39	Seroprevalence and Correlates of Human Papillomavirus 16/18 Seropositivity Among Young Women in Costa Rica. Sexually Transmitted Diseases, 2010, 37, 706-714.	1.7	27
40	Impact of Human Papillomavirus Vaccination on Cervical Cytology Screening, Colposcopy, and Treatment. American Journal of Epidemiology, 2013, 178, 752-760.	3.4	26
41	Evaluation of a Novel PCR-Based Assay for Detection and Identification of <i>Chlamydia trachomatis</i> Serovars in Cervical Specimens. Journal of Clinical Microbiology, 2007, 45, 3986-3991.	3.9	25
42	Comparison between Urine and Cervical Samples for HPV DNA Detection and Typing in Young Women in Colombia. Cancer Prevention Research, 2016, 9, 766-771.	1.5	25
43	Direct Comparison of HPV16 Serological Assays Used to Define HPV-Na \tilde{A} -ve Women in HPV Vaccine Trials. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1547-1554.	2.5	24
44	Performance of Self-Collected Cervical Samples in Screening for Future Precancer Using Human Papillomavirus DNA Testing. Journal of the National Cancer Institute, 2014, 107, dju400-dju400.	6.3	24
45	Comparison of Antibody Responses to Human Papillomavirus Vaccination as Measured by Three Assays. Frontiers in Oncology, 2014, 3, 328.	2.8	24
46	Glutathione S-transferase L1 multiplex serology as a measure of cumulative infection with human papillomavirus. BMC Infectious Diseases, 2014, 14, 120.	2.9	22
47	molBV reveals immune landscape of bacterial vaginosis and predicts human papillomavirus infection natural history. Nature Communications, 2022, 13 , 233 .	12.8	20
48	Efficacy of the ASO4-Adjuvanted HPV16/18 Vaccine: Pooled Analysis of the Costa Rica Vaccine and PATRICIA Randomized Controlled Trials. Journal of the National Cancer Institute, 2020, 112, 818-828.	6.3	19
49	Epidemiology of Genital Chlamydia trachomatis Infection Among Young Women in Costa Rica. Sexually Transmitted Diseases, 2008, 35, 461-468.	1.7	18
50	Evaluation of the Polyclonal ELISA HPV Serology Assay as a Biomarker for Human Papillomavirus Exposure. Sexually Transmitted Diseases, 2011, 38, 976-982.	1.7	18
51	Cross-protection of the Bivalent Human Papillomavirus (HPV) Vaccine Against Variants of Genetically Related High-Risk HPV Infections. Journal of Infectious Diseases, 2016, 213, 939-947.	4.0	18
52	Evaluation of the FTA Carrier Device for Human Papillomavirus Testing in Developing Countries. Journal of Clinical Microbiology, 2012, 50, 3870-3876.	3.9	17
53	Reduced Prevalence of Vulvar HPV16/18 Infection Among Women Who Received the HPV16/18 Bivalent Vaccine: A Nested Analysis Within the Costa Rica Vaccine Trial. Journal of Infectious Diseases, 2014, 210, 1890-1899.	4.0	17
54	Rationale and design of a long term follow-up study of women who did and did not receive HPV 16/18 vaccination in Guanacaste, Costa Rica. Vaccine, 2015, 33, 2141-2151.	3.8	17

#	Article	IF	CITATIONS
55	Evaluation of TypeSeq, a Novel High-Throughput, Low-Cost, Next-Generation Sequencing-Based Assay for Detection of 51 Human Papillomavirus Genotypes. Journal of Infectious Diseases, 2019, 220, 1609-1619.	4.0	17
56	Genetic Admixture and Population Substructure in Guanacaste Costa Rica. PLoS ONE, 2010, 5, e13336.	2.5	16
57	Effect of Different Human Papillomavirus Serological and DNA Criteria on Vaccine Efficacy Estimates. American Journal of Epidemiology, 2014, 180, 599-607.	3.4	14
58	Design and statistical considerations for studies evaluating the efficacy of a single dose of the human papillomavirus (HPV) vaccine. Contemporary Clinical Trials, 2018, 68, 35-44.	1.8	12
59	The Natural History of Oral Human Papillomavirus in Young Costa Rican Women. Sexually Transmitted Diseases, 2017, 44, 442-449.	1.7	10
60	Precancerous cervical lesions caused by non-vaccine-preventable HPV types after vaccination with the bivalent ASO4-adjuvanted HPV vaccine: an analysis of the long-term follow-up study from the randomised Costa Rica HPV Vaccine Trial. Lancet Oncology, The, 2022, 23, 940-949.	10.7	10
61	Immunogenicity assessment of HPV16/18 vaccine using the glutathione S-transferase L1 multiplex serology assay. Human Vaccines and Immunotherapeutics, 2014 , 10 , $2965-2974$.	3.3	7
62	Vaginal residence and pharmacokinetic preclinical study of topical vaginal mucoadhesive W/S emulsions containing ciprofloxacin. International Journal of Pharmaceutics, 2019, 554, 276-283.	5.2	7
63	Efficacy of AS04-Adjuvanted Vaccine Against Human Papillomavirus (HPV) Types 16 and 18 in Clearing Incident HPV Infections: Pooled Analysis of Data From the Costa Rica Vaccine Trial and the PATRICIA Study. Journal of Infectious Diseases, 2021, 223, 1576-1581.	4.0	7
64	Risk Factors for Non–Human Papillomavirus (HPV) Type 16/18 Cervical Infections and Associated Lesions Among HPV DNA–Negative Women Vaccinated Against HPV-16/18 in the Costa Rica Vaccine Trial. Journal of Infectious Diseases, 2021, 224, 503-516.	4.0	4
65	HPV16 infection decreases vaccine-induced HPV16 antibody avidity: the CVT trial. Npj Vaccines, 2022, 7, 40.	6.0	1