Michael Mauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11095208/publications.pdf

Version: 2024-02-01

57719 34964 10,271 121 44 98 citations h-index g-index papers 126 126 126 9204 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	KDOQI US Commentary on the KDIGO 2020 Clinical Practice Guideline for Diabetes Management in CKD. American Journal of Kidney Diseases, 2022, 79, 457-479.	2.1	18
2	A novel unbiased method reveals progressive podocyte globotriaosylceramide accumulation and loss with age in females with Fabry disease. Kidney International, 2022, 102, 173-182.	2.6	3
3	A New Panel-Estimated GFR, Including \hat{I}^2 2-Microglobulin and \hat{I}^2 -Trace Protein and Not Including Race, Developed in a Diverse Population. American Journal of Kidney Diseases, 2021, 77, 673-683.e1.	2.1	47
4	MO041STABILIZATION OF KIDNEY FUNCTION DECLINE AND CARDIOMYOPATHY IN MALE PATIENTS WITH CLASSIC FABRY DISEASE: A PRE- VS. POST-AGALSIDASE BETA TREATMENT FABRY REGISTRY ANALYSIS. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	O
5	Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. Journal of the American Society of Nephrology: JASN, 2021, 32, 2331-2351.	3.0	20
6	Pima Indian Contributions to Our Understanding of Diabetic Kidney Disease. Diabetes, 2021, 70, 1603-1616.	0.3	15
7	New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. New England Journal of Medicine, 2021, 385, 1737-1749.	13.9	1,236
8	Serum Level of Polyubiquitinated PTEN and Loss of Kidney Function in American Indians With Type 2 Diabetes. American Journal of Kidney Diseases, 2021, , .	2.1	4
9	Uric acid and risk of diabetic kidney disease. Journal of Nephrology, 2020, 33, 995-999.	0.9	15
10	Renal structure in type 2 diabetes: facts and misconceptions. Journal of Nephrology, 2020, 33, 901-907.	0.9	20
11	Accumulation of Globotriaosylceramide in Podocytes in Fabry Nephropathy Is Associated with Progressive Podocyte Loss. Journal of the American Society of Nephrology: JASN, 2020, 31, 865-875.	3.0	55
12	Serum Urate Lowering with Allopurinol and Kidney Function in Type 1 Diabetes. New England Journal of Medicine, 2020, 382, 2493-2503.	13.9	228
13	Performance of Indexed and Nonindexed Estimated GFR. American Journal of Kidney Diseases, 2020, 76, 446-449.	2.1	19
14	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	3.0	135
15	Genetic Determinants of Glycated Hemoglobin in Type 1 Diabetes. Diabetes, 2019, 68, 858-867.	0.3	14
16	Changes in Albuminuria But Not GFR are Associated with Early Changes in Kidney Structure in Type 2 Diabetes. Journal of the American Society of Nephrology: JASN, 2019, 30, 1049-1059.	3.0	45
17	Preventing Early Renal Loss in Diabetes (PERL) Study: A Randomized Double-Blinded Trial of Allopurinol—Rationale, Design, and Baseline Data. Diabetes Care, 2019, 42, 1454-1463.	4.3	39
18	Low-dose agalsidase beta treatment in male pediatric patients with Fabry disease: A 5-year randomized controlled trial. Molecular Genetics and Metabolism, 2019, 127, 86-94.	0.5	25

#	Article	IF	CITATIONS
19	Urinary IgG4 and Smad1 Are Specific Biomarkers for Renal Structural and Functional Changes in Early Stages of Diabetic Nephropathy. Diabetes, 2018, 67, 986-993.	0.3	15
20	Fabry disease revisited: Management and treatment recommendations for adult patients. Molecular Genetics and Metabolism, 2018, 123, 416-427.	0.5	391
21	Uric Acid and Diabetic Nephropathy Risk. Contributions To Nephrology, 2018, 192, 103-109.	1.1	47
22	Role of Kidney Biopsies for Biomarker Discovery in Diabetic Kidney Disease. Advances in Chronic Kidney Disease, 2018, 25, 192-201.	0.6	25
23	White blood cell fractions correlate with lesions of diabetic kidney disease and predict loss of kidney function in Type 2 diabetes. Nephrology Dialysis Transplantation, 2018, 33, 1001-1009.	0.4	21
24	Urine inositol pentakisphosphate 2-kinase and changes in kidney structure in early diabetic kidney disease in type 1 diabetes. American Journal of Physiology - Renal Physiology, 2018, 315, F1484-F1492.	1.3	1
25	Serum cystatin C in youth with diabetes: The SEARCH for diabetes in youth study. Diabetes Research and Clinical Practice, 2017, 130, 258-265.	1.1	6
26	Reduction of podocyte globotriaosylceramide content in adult male patients with Fabry disease with amenable <i>GLA</i> mutations following 6 months of migalastat treatment. Journal of Medical Genetics, 2017, 54, 781-786.	1.5	41
27	Plasma bradykinin and early diabetic nephropathy lesions in type 1 diabetes mellitus. PLoS ONE, 2017, 12, e0180964.	1.1	11
28	Time to treatment benefit for adult patients with Fabry disease receiving agalsidase \hat{l}^2 : data from the Fabry Registry. Journal of Medical Genetics, 2016, 53, 495-502.	1.5	101
29	Advanced Glycation End Products Predict Loss of Renal Function and Correlate With Lesions of Diabetic Kidney Disease in American Indians With Type 2 Diabetes. Diabetes, 2016, 65, 3744-3753.	0.3	63
30	Risk factors for severe clinical events in male and female patients with Fabry disease treated with agalsidase beta enzyme replacement therapy: Data from the Fabry Registry. Molecular Genetics and Metabolism, 2016, 119, 151-159.	0.5	35
31	Association Between Blood Pressure and Adverse Renal Events in Type 1 Diabetes. Diabetes Care, 2016, 39, 2218-2224.	4.3	25
32	The dose–response effect of insulin sensitivity on albuminuria in children according to diabetes type. Pediatric Nephrology, 2016, 31, 933-940.	0.9	11
33	Structural Predictors of Loss of Renal Function in American Indians with Type 2 Diabetes. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 254-261.	2.2	79
34	The management and treatment of children with Fabry disease: A United States-based perspective. Molecular Genetics and Metabolism, 2016, 117, 104-113.	0.5	85
35	One Year of Enzyme Replacement Therapy Reduces Globotriaosylceramide Inclusions in Podocytes in Male Adult Patients with Fabry Disease. PLoS ONE, 2016, 11, e0152812.	1.1	38
36	Urinary Podocyte Loss Is Increased in Patients with Fabry Disease and Correlates with Clinical Severity of Fabry Nephropathy. PLoS ONE, 2016, 11, e0168346.	1.1	41

#	Article	IF	Citations
37	Glomerular structural-functional relationship models of diabetic nephropathy are robust in type 1 diabetic patients. Nephrology Dialysis Transplantation, 2015, 30, 918-923.	0.4	38
38	Differential Gene Expression in Diabetic Nephropathy in Individuals With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E876-E882.	1.8	18
39	Differential Response to High Glucose in Skin Fibroblasts of Monozygotic Twins Discordant for Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E883-E889.	1.8	10
40	Podocyte Structural Parameters Do Not Predict Progression to Diabetic Nephropathy in Normoalbuminuric Type 1 Diabetic Patients. American Journal of Nephrology, 2015, 41, 277-283.	1.4	13
41	Urinary monocyte chemoattractant protein-1 and hepcidin and early diabetic nephropathy lesions in type 1 diabetes mellitus. Nephrology Dialysis Transplantation, 2015, 30, 599-606.	0.4	31
42	Characterization of Early Disease Status in Treatment-Naive Male Paediatric Patients with Fabry Disease Enrolled in a Randomized Clinical Trial. PLoS ONE, 2015, 10, e0124987.	1.1	42
43	Mosaicism of Podocyte Involvement Is Related to Podocyte Injury in Females with Fabry Disease. PLoS ONE, 2014, 9, e112188.	1.1	29
44	Glomerular filtration rate estimation using cystatin C alone or combined with creatinine as a confirmatory test. Nephrology Dialysis Transplantation, 2014, 29, 1195-1203.	0.4	76
45	The renin–aldosterone axis in kidney transplant recipients and its association with allograft function and structure. Kidney International, 2014, 85, 404-415.	2.6	17
46	Detection of diabetic nephropathy from advanced glycation endproducts (AGEs) differs in plasma and urine, and is dependent on the method of preparation. Amino Acids, 2014, 46, 311-319.	1.2	27
47	Fabry Disease: Dose Matters. Journal of the American Society of Nephrology: JASN, 2014, 25, 653-655.	3.0	21
48	Is diabetic nephropathy reversible?. Diabetes Research and Clinical Practice, 2014, 104, 323-328.	1.1	29
49	Renal complications of Fabry disease in children. Pediatric Nephrology, 2013, 28, 679-687.	0.9	46
50	Temporal Profile of Diabetic Nephropathy Pathologic Changes. Current Diabetes Reports, 2013, 13, 592-599.	1.7	47
51	Uric Acid Lowering to Prevent Kidney Function Loss in Diabetes: The Preventing Early Renal Function Loss (PERL) Allopurinol Study. Current Diabetes Reports, 2013, 13, 550-559.	1.7	127
52	Early Progression of Diabetic Nephropathy Correlates With Methylglyoxal-Derived Advanced Glycation End Products. Diabetes Care, 2013, 36, 3234-3239.	4.3	105
53	Adherence and renal biopsy feasibility in the Renin Angiotensin-System Study (RASS) primary prevention diabetes trial. Diabetes Research and Clinical Practice, 2013, 102, 25-34.	1.1	3
54	Normoalbuminuric Diabetic Kidney Disease in the U.S. Population. Journal of Diabetes and Its Complications, 2013, 27, 123-127.	1.2	65

#	Article	IF	Citations
55	Pancreas Transplantation and Reversal of Diabetic Nephropathy Lesions. Medical Clinics of North America, 2013, 97, 109-114.	1.1	17
56	Renal Lesions Predict Progression of Diabetic Nephropathy in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2013, 24, 1175-1181.	3.0	99
57	Angiotensin II Blockade in Kidney Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2013, 24, 320-327.	3.0	93
58	Predilection of Segmental Glomerulosclerosis Lesions for the Glomerulotubular Junction Area in Type 1 Diabetic Patients: A Novel Mapping Method. PLoS ONE, 2013, 8, e69253.	1.1	0
59	Gene Expression Differences in Skin Fibroblasts in Identical Twins Discordant for Type 1 Diabetes. Diabetes, 2012, 61, 739-744.	0.3	31
60	Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation. Nephrology Dialysis Transplantation, 2012, 27, 1042-1049.	0.4	132
61	Reversal of diabetic nephropathy: lessons from pancreas transplantation. Journal of Nephrology, 2012, 25, 13-18.	0.9	39
62	Morphologic Features of Declining Renal Function in Type 1 Diabetes. Seminars in Nephrology, 2012, 32, 415-422.	0.6	29
63	Effects of Pancreas Transplantation on the Prevention and Reversal of Diabetic Nephropathy. Contributions To Nephrology, 2011, 170, 237-246.	1.1	15
64	Glomerulopathy in spontaneously obese rhesus monkeys with type 2 diabetes: a stereological study. Diabetes/Metabolism Research and Reviews, 2011, 27, 341-347.	1.7	4
65	Tacrolimus and Cyclosporine Nephrotoxicity in Native Kidneys of Pancreas Transplant Recipients. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 101-106.	2.2	38
66	Benefits of Renin-Angiotensin Blockade on Retinopathy in Type 1 Diabetes Vary With Glycemic Control. Diabetes Care, 2011, 34, 1838-1842.	4.3	31
67	Quantitating Glomerular Endothelial Fenestration: An Unbiased Stereological Approach. American Journal of Nephrology, 2011, 33, 34-39.	1.4	13
68	Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney International, 2011, 79, 663-670.	2.6	138
69	Comparative Performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study Equations for Estimating GFR Levels Above 60 mL/min/1.73 m2. American Journal of Kidney Diseases, 2010, 56, 486-495.	2.1	507
70	Cellular basis of diabetic nephropathy: V. Endoglin expression levels and diabetic nephropathy risk in patients with Type 1 diabetes. Journal of Diabetes and Its Complications, 2010, 24, 242-249.	1.2	6
71	Assessment of Renal Pathology and Dysfunction in Children with Fabry Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 365-370.	2.2	37
72	Prognostic Indicators of Renal Disease Progression in Adults with Fabry Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 2220-2228.	2.2	122

#	Article	IF	Citations
73	Relationship of Blood Pressure to Retinal Vessel Diameter in Type 1 Diabetes Mellitus. JAMA Ophthalmology, 2010, 128, 198.	2.6	13
74	Renal and Retinal Effects of Enalapril and Losartan in Type 1 Diabetes. New England Journal of Medicine, 2009, 361, 40-51.	13.9	712
75	Progression of diabetic nephropathy in type 1 diabetic patients. Diabetes Research and Clinical Practice, 2009, 83, 1-8.	1.1	46
76	Pathogenesis and Pathophysiology of Diabetic Nephropathy. , 2009, , 214-223.		4
77	Implications of early renal changes in fabry disease. Clinical Therapeutics, 2008, 30, S40.	1.1	2
78	Having One Kidney Does Not Accelerate the Rate of Development of Diabetic Nephropathy Lesions in Type 1 Diabetic Patients. Diabetes, 2008, 57, 1707-1711.	0.3	22
79	Albumin Excretion Rate in Normal Adolescents. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 998-1005.	2.2	25
80	Podocyte Detachment and Reduced Glomerular Capillary Endothelial Fenestration in Human Type 1 Diabetic Nephropathy. Diabetes, 2007, 56, 2155-2160.	0.3	234
81	Histopathology of Diabetic Nephropathy. Seminars in Nephrology, 2007, 27, 195-207.	0.6	379
82	Glomerulotubular Junction Abnormalities Are Associated with Proteinuria in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2006, 17, S53-S60.	3.0	60
83	The Relation of Ambulatory Blood Pressure and Pulse Rate to Retinopathy in Type 1 Diabetes MellitusThe Renin–Angiotensin System Study. Ophthalmology, 2006, 113, 2231-2236.	2.5	23
84	Cellular basis of diabetic nephropathy: IV Antioxidant enzyme mRNA expression levels in skin fibroblasts of type 1 diabetic sibling pairs. Nephrology Dialysis Transplantation, 2006, 21, 3122-3126.	0.4	8
85	Enhancing the Predictive Value of Urinary Albumin for Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2006, 17, 339-352.	3.0	86
86	Diabetic Nephropathy Is Associated With Gene Expression Levels of Oxidative Phosphorylation and Related Pathways. Diabetes, 2006, 55, 1826-1831.	0.3	42
87	The Structure of Human Diabetic Nephropathy. , 2006, , 361-374.		4
88	The Early Natural History of Nephropathy in Type 1 Diabetes: III. Predictors of 5-Year Urinary Albumin Excretion Rate Patterns in Initially Normoalbuminuric Patients. Diabetes, 2005, 54, 2164-2171.	0.3	181
89	The Relationship of Diabetic Retinopathy to Preclinical Diabetic Glomerulopathy Lesions in Type 1 Diabetic Patients: The Renin-Angiotensin System Study. Diabetes, 2005, 54, 527-533.	0.3	133
90	Susceptibility to Diabetic Nephropathy Is Related to Dicarbonyl and Oxidative Stress. Diabetes, 2005, 54, 3274-3281.	0.3	163

#	Article	IF	CITATIONS
91	Effect of Angiotensin II on Glomerular Structure in Streptozotocin-Induced Diabetic Rats. American Journal of Nephrology, 2004, 24, 549-556.	1.4	17
92	Effects of Pancreas Transplantation on Secondary Complications of Diabetes. , 2004, , 455-508.		1
93	Atubular Glomeruli and Glomerulotubular Junction Abnormalities in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, 908-917.	3.0	105
94	Glomerular Structure in the Normal Human Kidney: Differences between Living and Cadaver Donors. Journal of the American Society of Nephrology: JASN, 2003, 14, 1901-1903.	3.0	14
95	Effects of Duration and Age at Onset of Type 1 Diabetes on Preclinical Manifestations of Nephropathy. Diabetes, 2003, 52, 1818-1824.	0.3	55
96	Low Glomerular Filtration Rate in Normoalbuminuric Type 1 Diabetic Patients: An Indicator of More Advanced Glomerular Lesions. Diabetes, 2003, 52, 1036-1040.	0.3	273
97	Diabetes and nephropathy. Current Opinion in Nephrology and Hypertension, 2003, 12, 273-282.	1.0	130
98	The Early Natural History of Nephropathy in Type 1 Diabetes: I. Study Design and Baseline Characteristics of the Study Participants. Diabetes, 2002, 51, 1572-1579.	0.3	126
99	Cellular Basis of Diabetic Nephropathy: II. The Transforming Growth Factor-Â System and Diabetic Nephropathy Lesions in Type 1 Diabetes. Diabetes, 2002, 51, 3577-3581.	0.3	73
100	Cellular Basis of Diabetic Nephropathy: 1. Study Design and Renal Structural-Functional Relationships in Patients With Long-Standing Type 1 Diabetes. Diabetes, 2002, 51, 506-513.	0.3	188
101	ACE-I and ARBs in early diabetic nephropathy. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2002, 3, 262-269.	1.0	52
102	The Early Natural History of Nephropathy in Type 1 Diabetes: II. Early Renal Structural Changes in Type 1 Diabetes. Diabetes, 2002, 51, 1580-1587.	0.3	279
103	Urinary Albumin as an Indicator of Diabetic Nephropathy Lesions in Japanese Type 2 Diabetic Patients. Nephron, 2002, 91, 292-299.	0.9	25
104	An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients11See Editorial by Fogo, p. 2274 Kidney International, 2002, 61, 2058-2065.	2.6	82
105	Risk predictors in patients with diabetic nephropathy. Current Diabetes Reports, 2001, 1, 245-250.	1.7	3
106	Quantitative immunoelectron microscopy of type VI collagen in glomeruli in type I diabetic patients. Kidney International, 2001, 59, 317-323.	2.6	25
107	Improved growth velocity with intensive dialysis. Consequence or coincidence?. Pediatric Nephrology, 2000, 14, 710-712.	0.9	13
108	Renal Structure in Type 2 Diabetic Patients with Microalbuminuria., 2000,, 225-236.		5

#	ARTICLE	IF	CITATIONS
109	Reversibility of Diabetic Nephropathy Lesions: A New Concept. , 2000, , 435-440.		O
110	Insulin-dependent diabetic sibling pairs are concordant for sodium-hydrogen antiport activity11See Editorial by Giancarlo Viberti, p. 2526 Kidney International, 1999, 55, 2383-2389.	2.6	29
111	Chronology of renal scarring in males with Alport syndrome. Pediatric Nephrology, 1998, 12, 269-274.	0.9	44
112	Hemodialysis catheter placement and recirculation in treatment of hyperammonemia. Pediatric Nephrology, 1998, 12, 592-595.	0.9	10
113	Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney International, 1998, 53, 754-761.	2.6	121
114	Reversal of Lesions of Diabetic Nephropathy after Pancreas Transplantation. New England Journal of Medicine, 1998, 339, 69-75.	13.9	1,084
115	Ddiabetic nephropathy as a of revrsibility of established renal lesions. Current Opinion in Nephrology and Hypertension, 1998, 7, 489-494.	1.0	21
116	Renal Structure in Non Insulin Dependent Diabetic Patients with Microalbuminuria., 1998,, 237-247.		0
117	Renal Structural Changes in Non–Insulin-Dependent Diabetes Mellitus. American Journal of Hypertension, 1997, 10, 184S-188S.	1.0	5
118	Delayed acute renal failure in post-transplant period in young children from unexplained etiology. Pediatric Nephrology, 1997, 11, 531-536.	0.9	1
119	Renal Structure in Non Insulin-Dependent Diabetic Patients with Microalbuminuria., 1996,, 205-214.		0
120	Cyclosporine associated lesions in native kidneys of diabetic pancreas transplant recipients. Kidney International, 1995, 48, 489-495.	2.6	51
121	Sequential renal biopsies in insulin-dependent diabetic patients: Structural factors associated with clinical progression. Kidney International, 1995, 48, 1929-1935.	2.6	121