Shian-Huey Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11094306/publications.pdf

Version: 2024-02-01

24 papers 3,870 citations

279798 23 h-index 610901 24 g-index

25 all docs

25 docs citations

25 times ranked

5196 citing authors

#	Article	IF	CITATIONS
1	Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking. Science Signaling, 2017, 10, .	3.6	34
2	Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. Journal of Cell Science, 2017, 130, 3517-3531.	2.0	39
3	Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility. PLoS ONE, 2015, 10, e0134927.	2.5	37
4	An inhibitor of the protein kinases TBK1 and IKK-É> improves obesity-related metabolic dysfunctions in mice. Nature Medicine, 2013, 19, 313-321.	30.7	364
5	Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKK $\hat{l}\mu$ and TBK1. ELife, 2013, 2, e01119.	6.0	118
6	The Protein Kinase IKKÉ> Regulates Energy Balance in Obese Mice. Cell, 2009, 138, 961-975.	28.9	318
7	Fat-specific Protein 27 Regulates Storage of Triacylglycerol. Journal of Biological Chemistry, 2008, 283, 14355-14365.	3.4	169
8	Insulin Stimulates Phosphatidylinositol 3-Phosphate Production via the Activation of Rab5. Molecular Biology of the Cell, 2008, 19, 2718-2728.	2.1	50
9	TC10α Is Required for Insulin-Stimulated Glucose Uptake in Adipocytes. Endocrinology, 2007, 148, 27-33.	2.8	78
10	Wnt10b Inhibits Obesity in ob/ob and Agouti Mice. Diabetes, 2007, 56, 295-303.	0.6	154
11	Gapex-5, a Rab31 Guanine Nucleotide Exchange Factor that Regulates Glut4 Trafficking in Adipocytes. Cell Metabolism, 2007, 5, 59-72.	16.2	96
12	Activation of RalA Is Required for Insulin-Stimulated Glut4 Trafficking to the Plasma Membrane via the Exocyst and the Motor Protein Myo1c. Developmental Cell, 2007, 13, 391-404.	7.0	182
13	Bone marrow–specific Cap gene deletion protects against high-fat diet–induced insulin resistance. Nature Medicine, 2007, 13, 455-462.	30.7	110
14	TC10 and Insulinâ€Stimulated Glucose Transport. Methods in Enzymology, 2006, 406, 701-714.	1.0	22
15	Compartmentalization of the Exocyst Complex in Lipid Rafts Controls Glut4 Vesicle Tethering. Molecular Biology of the Cell, 2006, 17, 2303-2311.	2.1	108
16	LXRβ Is Required for Adipocyte Growth, Glucose Homeostasis, and \hat{I}^2 Cell Function. Journal of Biological Chemistry, 2005, 280, 23024-23031.	3.4	138
17	Insulin Signaling and the Regulation of Glucose Transport. Molecular Medicine, 2004, 10, 65-71.	4.4	383
18	Wnt10b Inhibits Development of White and Brown Adipose Tissues. Journal of Biological Chemistry, 2004, 279, 35503-35509.	3.4	316

#	ARTICLE	lF	CITATION
19	TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO Journal, 2003, 22, 2679-2691.	7.8	65
20	The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature, 2003, 422, 629-633.	27.8	321
21	The Exocytotic Trafficking of TC10 Occurs through both Classical and Nonclassical Secretory Transport Pathways in 3T3L1 Adipocytes. Molecular and Cellular Biology, 2003, 23, 961-974.	2.3	39
22	Cloning and Functional Characterization of Related TC10 Isoforms, a Subfamily of Rho Proteins Involved in Insulin-stimulated Glucose Transport. Journal of Biological Chemistry, 2002, 277, 13067-13073.	3.4	47
23	Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature, 2001, 410, 944-948.	27.8	530
24	Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. Journal of Cell Biology, 2001, 154, 829-840.	5.2	152