Benoit De Crombrugghe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11091779/publications.pdf Version: 2024-02-01

170 papers	24,552 citations	9234 74 h-index	⁷³³³ 152 g-index
172	172	172	19775
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation. Cell, 2002, 108, 17-29.	13.5	3,086
2	Sox9 is required for cartilage formation. Nature Genetics, 1999, 22, 85-89.	9.4	1,576
3	The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes and Development, 2002, 16, 2813-2828.	2.7	1,511
4	Interactions between Sox9 and Â-catenin control chondrocyte differentiation. Genes and Development, 2004, 18, 1072-1087.	2.7	670
5	A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-β. Cell, 1988, 52, 405-414.	13.5	634
6	The Transcription Factors L-Sox5 and Sox6 Are Essential for Cartilage Formation. Developmental Cell, 2001, 1, 277-290.	3.1	548
7	Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14665-14670.	3.3	508
8	Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. , 1997, 209, 377-386.		482
9	Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice. PLoS Genetics, 2014, 10, e1004820.	1.5	456
10	NFAT and Osterix cooperatively regulate bone formation. Nature Medicine, 2005, 11, 880-885.	15.2	437
11	Regulatory mechanisms in the pathways of cartilage and bone formation. Current Opinion in Cell Biology, 2001, 13, 721-728.	2.6	419
12	Transcriptional mechanisms of chondrocyte differentiation. Matrix Biology, 2000, 19, 389-394.	1.5	416
13	Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9360-9365.	3.3	383
14	Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends in Genetics, 2003, 19, 458-466.	2.9	377
15	Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends in Biochemical Sciences, 1998, 23, 174-178.	3.7	343
16	SOX9 Is Required for the Differentiation of Paneth Cells in the Intestinal Epithelium. Gastroenterology, 2007, 133, 539-546.	0.6	286
17	A Gene for a Novel Zinc-finger Protein Expressed in Differentiated Epithelial Cells and Transiently in Certain Mesenchymal Cells. Journal of Biological Chemistry, 1996, 271, 31384-31390.	1.6	279
18	Genetic regulation of bone mass and susceptibility to osteoporosis. Genes and Development, 2006, 20, 2492-2506	2.7	275

#	Article	IF	CITATIONS
19	The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp. Cell, 1980, 22, 887-892.	13.5	269
20	Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12919-12924.	3.3	267
21	Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell, 1977, 12, 847-854.	13.5	265
22	SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development (Cambridge), 2010, 137, 901-911.	1.2	257
23	Potent Inhibition of the Master Chondrogenic FactorSox9 Gene by Interleukin-1 and Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2000, 275, 3687-3692.	1.6	256
24	Phosphorylation of SOX9 by Cyclic AMP-Dependent Protein Kinase A Enhances SOX9's Ability To Transactivate a Col2a1 Chondrocyte-Specific Enhancer. Molecular and Cellular Biology, 2000, 20, 4149-4158.	1.1	256
25	Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes and Development, 2004, 18, 290-305.	2.7	250
26	Chondrocyte-specific Enhancer Elements in the Col11a2 Gene Resemble the Col2a1 Tissue-specific Enhancer. Journal of Biological Chemistry, 1998, 273, 14998-15006.	1.6	246
27	Lac DNA, RNA Polymerase and Cyclic AMP Receptor Protein, Cyclic AMP, Lac Repressor and Inducer are the Essential Elements for Controlled Lac Transcription. Nature: New Biology, 1971, 231, 139-142.	4.5	244
28	Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nature Genetics, 1996, 13, 275-283.	9.4	237
29	Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6502-6507.	3.3	237
30	Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biology, 1998, 16, 529-540.	1.5	232
31	p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. Journal of Cell Biology, 2006, 172, 115-125.	2.3	225
32	Cyclic AMP regulates Catabolite and Transient Repression in E. coli. Nature, 1969, 223, 810-812.	13.7	194
33	Unusual methylation pattern of the $\hat{I}\pm 2(I)$ collagen gene. Cell, 1982, 29, 203-210.	13.5	193
34	Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Human Pathology, 2003, 34, 263-269.	1.1	187
35	Ligand-Dependent Genetic Recombination in Fibroblasts. American Journal of Pathology, 2002, 160, 1609-1617.	1.9	183
36	Postnatal induction of transforming growth factor Î ² signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis and Rheumatism, 2007, 56, 334-344.	6.7	174

BENOIT DE CROMBRUGGHE

#	Article	IF	CITATIONS
37	Î ² -catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Annals of the Rheumatic Diseases, 2012, 71, 761-767.	0.5	174
38	Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis and Rheumatism, 2010, 62, 1523-1532.	6.7	170
39	Positive Regulation of Adult Bone Formation by Osteoblast-Specific Transcription Factor Osterix. Journal of Bone and Mineral Research, 2009, 24, 1055-1065.	3.1	165
40	Sox9â€expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis, 2010, 48, 635-644.	0.8	159
41	Three High Mobility Group-like Sequences within a 48-Base Pair Enhancer of the Col2a1 Gene Are Required for Cartilage-specific Expression in Vivo. Journal of Biological Chemistry, 1998, 273, 14989-14997.	1.6	156
42	Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development (Cambridge), 2009, 136, 2747-2756.	1.2	156
43	Effect of Rho on Transcription of Bacterial Operons. Nature: New Biology, 1973, 241, 260-264.	4.5	150
44	Expression Pattern and Gene Characterization ofAsporin. Journal of Biological Chemistry, 2001, 276, 12212-12221.	1.6	149
45	Specific hybridization probes for mouse type I, II, III and IX collagen mRNAs. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 241-243.	2.4	146
46	Normal long bone growth and development in type X collagen-null mice. Nature Genetics, 1994, 8, 129-135.	9.4	145
47	Generation of aggrecan reERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis, 2009, 47, 805-814.	0.8	145
48	Characterization of primary cultures of chondrocytes from type II collagen/β-galactosidase transgenic mice. Matrix Biology, 1994, 14, 329-335.	1.5	143
49	Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proceedings of the United States of America, 2008, 105, 6936-6941.	3.3	143
50	Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO Journal, 2010, 29, 68-79.	3.5	143
51	The postnatal role of Sox9 in cartilage. Journal of Bone and Mineral Research, 2012, 27, 2511-2525.	3.1	143
52	Use of a New Rat Chondrosarcoma Cell line to Delineate a 119-Base Pair Chondrocyte-specific Enhancer Element and to Define Active Promoter Segments in the Mouse Pro-α1(II) Collagen Gene. Journal of Biological Chemistry, 1995, 270, 27711-27719.	1.6	139
53	Transforming Growth Factor β: Biochemistry and Roles in Embryogenesis, Tissue Repair and Remodeling, and Carcinogenesis. , 1988, 44, 157-197.		134
54	Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nature Communications, 2011, 2, 251.	5.8	134

4

#	Article	IF	CITATIONS
55	Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology, 2003, 38, 890-899.	3.6	129
56	Fibroblast-specific Expression of a Kinase-deficient Type II Transforming Growth Factor β (TGFβ) Receptor Leads to Paradoxical Activation of TGFβ Signaling Pathways with Fibrosis in Transgenic Mice. Journal of Biological Chemistry, 2003, 278, 25109-25119.	1.6	126
57	Regulation of a collagen gene promoter by the product of viral mos oncogene. Nature, 1985, 314, 286-289.	13.7	118
58	Sp1 and Sp3 Transcription Factors Mediate Interleukin-1Î ² Down-regulation of Human Type II Collagen Gene Expression in Articular Chondrocytes. Journal of Biological Chemistry, 2003, 278, 39762-39772.	1.6	110
59	DNA Binding Specificity of the CCAAT-binding Factor CBF/NF-Y. Journal of Biological Chemistry, 1997, 272, 26562-26572.	1.6	103
60	Genetic evidence for the vital function of osterix in cementogenesis. Journal of Bone and Mineral Research, 2012, 27, 1080-1092.	3.1	101
61	Development of the Fetal Bone Marrow Niche and Regulation of HSC Quiescence and Homing Ability by Emerging Osteolineage Cells. Cell Reports, 2014, 9, 581-590.	2.9	100
62	Mutations in the Escherichia coli operon that define two promoters and the binding site of the cyclic AMP receptor protein. Journal of Molecular Biology, 1982, 154, 211-227.	2.0	97
63	Constitutive activation of MKK6 in chondrocytes of transgenic mice inhibits proliferation and delays endochondral bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 365-370.	3.3	96
64	Specificity of the bacteriophage lambda N gene product (pN): Nut sequences are necessary and sufficient for antitermination by pN. Cell, 1979, 18, 1145-1151.	13.5	94
65	Cthrc1 Is a Positive Regulator of Osteoblastic Bone Formation. PLoS ONE, 2008, 3, e3174.	1.1	93
66	Osterix, a Transcription Factor for Osteoblast Differentiation, Mediates Antitumor Activity in Murine Osteosarcoma. Cancer Research, 2005, 65, 1124-1128.	0.4	89
67	Dermal Transforming Growth Factor-Î ² Responsiveness Mediates Wound Contraction and Epithelial Closure. American Journal of Pathology, 2010, 176, 98-107.	1.9	89
68	Regulation of procollagen messenger ribonucleic acid levels in Rous sarcoma virus transformed chick embryo fibroblasts. Biochemistry, 1981, 20, 2678-2684.	1.2	88
69	Transgenic Mice Expressing a Ligand-Inducible Cre Recombinase in Osteoblasts and Odontoblasts. American Journal of Pathology, 2004, 165, 1875-1882.	1.9	88
70	SOX9 Regulates Multiple Genes in Chondrocytes, Including Genes Encoding ECM Proteins, ECM Modification Enzymes, Receptors, and Transporters. PLoS ONE, 2014, 9, e107577.	1.1	86
71	A conserved nucleotide sequence, coding for a segment of the C-propeptkle, is found at the same location in different collagen genes. Nucleic Acids Research, 1983, 11, 2733-2744.	6.5	84
72	Studies on Transcription Activation by the Multimeric CCAAT-binding Factor CBF. Journal of Biological Chemistry, 1995, 270, 468-475.	1.6	82

#	Article	IF	CITATIONS
73	Isolation of mutant promoters in the Escherichia coli galactose operon using local mutagenesis on cloned DNA fragments. Journal of Molecular Biology, 1982, 154, 197-209.	2.0	81
74	The gene for the homeodomain-containing protein Cart-1 is expressed in cells that have a chondrogenic potential during embryonic development. Mechanisms of Development, 1994, 48, 245-254.	1.7	81
75	Identification of SOX9 Interaction Sites in the Genome of Chondrocytes. PLoS ONE, 2010, 5, e10113.	1.1	81
76	rDlx, a Novel Distal-less-like Homeoprotein Is Expressed in Developing Cartilages and Discrete Neuronal Tissues. Developmental Biology, 1994, 164, 37-51.	0.9	78
77	Attenuation of fibrosis in vitro and in vivo with SPARC siRNA. Arthritis Research and Therapy, 2010, 12, R60.	1.6	78
78	Conservation of binding sites for regulatory factors in the coordinately expressed α1(I) and α2(I) collagen promoters. Biochemical and Biophysical Research Communications, 1991, 177, 538-544.	1.0	74
79	SOX9 Exerts a Bifunctional Effect on Type II Collagen Gene (COL2A1) Expression in Chondrocytes Depending on the Differentiation State. DNA and Cell Biology, 2003, 22, 119-129.	0.9	74
80	Unusual location and function of the operator in the Escherichia coli galactose operon. Nature, 1979, 279, 494-500.	13.7	73
81	Conservation of the sizes for one but not another class of exons in two chick collagen genes. Nature, 1984, 310, 333-337.	13.7	73
82	The Transcriptional Activity of the CCAAT-binding Factor CBF Is Mediated by Two Distinct Activation Domains, One in the CBF-B Subunit and the Other in the CBF-C Subunit. Journal of Biological Chemistry, 1996, 271, 14485-14491.	1.6	73
83	Cloning and Characterization of a Transcription Factor That Binds to the Proximal Promoters of the Two Mouse Type I Collagen Genes. Journal of Biological Chemistry, 1997, 272, 4915-4923.	1.6	73
84	Transcriptional regulation of chondrogenesis by coactivator Tip60 via chromatin association with Sox9 and Sox5. Nucleic Acids Research, 2008, 36, 3011-3024.	6.5	73
85	Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone, 2010, 46, 920-928.	1.4	69
86	Transcriptional Regulation of Vascular Endothelial Growth Factor (VEGF) by Osteoblast-specific Transcription Factor Osterix (Osx) in Osteoblasts. Journal of Biological Chemistry, 2012, 287, 1671-1678.	1.6	69
87	Connective Tissue Growth Factor causes EMT-like cell fate changes in vivo and in vitro. Journal of Cell Science, 2013, 126, 2164-75.	1.2	68
88	Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements. Nucleic Acids Research, 2003, 31, 1541-1553.	6.5	66
89	Interactions between PIAS Proteins and SOX9 Result in an Increase in the Cellular Concentrations of SOX9. Journal of Biological Chemistry, 2006, 281, 14417-14428.	1.6	65
90	A New Long Form of c-Maf Cooperates with Sox9 to Activate the Type II Collagen Gene. Journal of Biological Chemistry, 2002, 277, 50668-50675.	1.6	62

#	Article	IF	CITATIONS
91	Stimulation of lac mRNA synthesis by cyclic AMP in cell free extracts of Escherichia coli. Biochemical and Biophysical Research Communications, 1970, 38, 894-901.	1.0	61
92	Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification. Biochemical and Biophysical Research Communications, 2012, 418, 634-640.	1.0	57
93	The transcription factor Sox9 is degraded by the ubiquitin?proteasome system and stabilized by a mutation in a ubiquitin-target site. Matrix Biology, 2005, 23, 499-505.	1.5	56
94	Specific expression of Cre recombinase in hypertrophic cartilage under the control of a BAC-Col10a1 promoter. Matrix Biology, 2008, 27, 693-699.	1.5	55
95	Decrease in the levels of nuclear RNA precursors for alpha 2 collagen in Rous sarcoma virus transformed fibroblasts. Nucleic Acids Research, 1981, 9, 1123-1131.	6.5	51
96	Misexpression of Sox9 in mouse limb bud mesenchyme induces polydactyly and rescues hypodactyly mice. Matrix Biology, 2007, 26, 224-233.	1.5	51
97	Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochemical and Biophysical Research Communications, 2010, 400, 684-688.	1.0	50
98	Role of Cyclic Adenosine 3′,5′-Monophosphate and the Cyclic Adenosine 3′,5′-Monophosphate Recept Protein in the Initiation of lac Transcription. Journal of Biological Chemistry, 1971, 246, 7343-7348.	tor 1.6	49
99	Transcription in vitro of bacteriophage lambda 4S RNA: studies on termination and rho protein. Nucleic Acids Research, 1977, 4, 827-842.	6.5	45
100	Sequence rearrangement and duplication of double stranded fibronectin cDNA probably occurring during cDNA synthesis by AMV reverse transcriptase and Escherichia coli DNA polymerase I. Nucleic Acids Research, 1980, 8, 3055-3064.	6.5	44
101	Activation of a fibroblast-specific enhancer of the Pro?2(I) collagen gene in tight-skin mice. Arthritis and Rheumatism, 2001, 44, 712-722.	6.7	44
102	Characterization of an Evolutionarily Conserved Far-upstream Enhancer in the Human α2(I) Collagen (COL1A2) Gene. Journal of Biological Chemistry, 2001, 276, 21754-21764.	1.6	44
103	Identification and Characterization of MicroRNAs Controlled by the Osteoblast-Specific Transcription Factor Osterix. PLoS ONE, 2013, 8, e58104.	1.1	44
104	The two activation domains of the CCAAT-binding factor CBF interact with the dTAFII110 component of the Drosophila TFIID complex. Biochemical Journal, 1998, 331, 291-297.	1.7	41
105	On the Mechanism of Action of lac Repressor. Nature: New Biology, 1971, 233, 67-70.	4.5	38
106	DNase I sensitivity of the $\hat{I}\pm 2(I)$ collagen gene: correlation with its expression but not with its methylation pattern. Nucleic Acids Research, 1984, 12, 3491-3502.	6.5	37
107	Specificity Protein 7 Is Required for Proliferation and Differentiation of Ameloblasts and Odontoblasts. Journal of Bone and Mineral Research, 2018, 33, 1126-1140.	3.1	37
108	Pleiotropic mutants of nih 3T3 cells with altered regulation in the expression of both type I collagen and fibronectin. Cell, 1985, 41, 201-209.	13.5	36

Benoit De Crombrugghe

#	Article	IF	CITATIONS
109	A highly conserved enhancer in mammalian type X collagen genes drives high levels of tissue-specific expression in hypertrophic cartilage in vitro and in vivo. Matrix Biology, 2004, 23, 309-322.	1.5	36
110	Activation of Proα2(I) Collagen Promoter during Hepatic Fibrogenesis in Transgenic Mice. Biochemical and Biophysical Research Communications, 1998, 250, 606-611.	1.0	35
111	E6-AP/UBE3A Protein Acts as a Ubiquitin Ligase toward SOX9 Protein. Journal of Biological Chemistry, 2013, 288, 35138-35148.	1.6	35
112	Activation of Transcription by the Cyclic AMP Receptor Protein. , 1984, , 129-167.		35
113	Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. Journal of Molecular Medicine, 2012, 90, 649-666.	1.7	34
114	A Novel Regulatory Mechanism of Type II Collagen Expression via a SOX9-dependent Enhancer in Intron 6. Journal of Biological Chemistry, 2017, 292, 528-538.	1.6	34
115	Interactions of RNA polymerase and the cyclic AMP receptor protein on DNA of theE. coligalactose operon. Nucleic Acids Research, 1983, 11, 5165-5180.	6.5	33
116	CBF/NF-Y Functions Both in Nucleosomal Disruption and Transcription Activation of the Chromatin-assembled Topoisomerase IIα Promoter. Journal of Biological Chemistry, 2001, 276, 40621-40630.	1.6	33
117	The dimerization domain of SOX9 is required for transcription activation of a chondrocyte-specific chromatin DNA template. Nucleic Acids Research, 2010, 38, 6018-6028.	6.5	33
118	Evidence for three major transcription activation elements in the proximal mouse proalpha2(I) collagen promoter. Nucleic Acids Research, 1996, 24, 3253-3260.	6.5	32
119	Osteoblast-Specific Expression of the α2(I) Collagen Promoter in Transgenic Mice: Correlation with the Distribution of TGF-β1. Journal of Bone and Mineral Research, 1993, 8, 1127-1136.	3.1	32
120	Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation. Biochemical and Biophysical Research Communications, 2007, 356, 935-941.	1.0	31
121	Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytesin Vitroandin Vivo. Journal of Biological Chemistry, 2006, 281, 31790-31800.	1.6	29
122	Expression of master regulatory genes controlling skeletal development in benign cartilage and bone forming tumors. Human Pathology, 2010, 41, 1788-1793.	1.1	29
123	Structure and regulation of a collagen gene. Trends in Biochemical Sciences, 1982, 7, 11-13.	3.7	27
124	Specific hybridization probes for mouse α2(IX) and α1(X) collagen mRNAs. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1130, 78-80.	2.4	27
125	Developmental expression of a type II collagen/β-galactosidase fusion gene in transgenic mice. Developmental Dynamics, 1995, 204, 202-210.	0.8	27
126	Transcriptional regulation of fibronectin gene by phorbol myristate acetate in hepatoma cells: A negative role for NF-?B. , 2000, 76, 437-451.		27

#	Article	IF	CITATIONS
127	Downregulation of rheumatoid arthritis-related antigen RA-A47 (HSP47/colligin-2) in chondrocytic cell lines induces apoptosis and cell-surface expression of RA-A47 in association with CD9. Journal of Cellular Physiology, 2005, 202, 191-204.	2.0	26
128	BAC constructs in transgenic reporter mouse lines control efficient and specific LacZ expression in hypertrophic chondrocytes under the complete Col10a1 promoter. Histochemistry and Cell Biology, 2007, 127, 183-194.	0.8	26
129	SOX9 directly Regulates CTGF/CCN2 Transcription in Growth Plate Chondrocytes and in Nucleus Pulposus Cells of Intervertebral Disc. Scientific Reports, 2016, 6, 29916.	1.6	24
130	Deletion analysis of the mouse alpha 1 (III) collagen promoter. Nucleic Acids Research, 1988, 16, 7513-7526.	6.5	21
131	Sp7 and Runx2 molecular complex synergistically regulate expression of target genes. Connective Tissue Research, 2014, 55, 83-87.	1.1	21
132	Transforming growth factor-? isoforms differently stimulate pro?2 (I) collagen gene expression during wound healing process in transgenic mice. Journal of Cellular Physiology, 2002, 190, 375-381.	2.0	20
133	Transcriptional Mechanisms Controlling Types I and III Collagen Genes. Annals of the New York Academy of Sciences, 1990, 580, 88-96.	1.8	19
134	The Osterix Transcription Factor Down-Regulates Interleukin-1α Expression in Mouse Osteosarcoma Cells. Molecular Cancer Research, 2008, 6, 119-126.	1.5	19
135	Mesenchymal Deletion of Histone Demethylase <i>NO66</i> in Mice Promotes Bone Formation. Journal of Bone and Mineral Research, 2015, 30, 1608-1617.	3.1	19
136	Structural Insights into Histone Demethylase NO66 in Interaction with Osteoblast-specific Transcription Factor Osterix and Gene Repression. Journal of Biological Chemistry, 2013, 288, 16430-16437.	1.6	18
137	Structural and Functional Analysis of the Genes for ?2(I) and ?1(III) Collagens. Annals of the New York Academy of Sciences, 1985, 460, 154-162.	1.8	17
138	Type I Collagen Structure, Synthesis, and Regulation. , 2008, , 285-318.		17
139	[20] Purification, characterization, and role of CCAAT-binding factor in transcription. Methods in Enzymology, 1996, 273, 217-232.	0.4	16
140	Characterization of Dkk1 gene regulation by the osteoblast-specific transcription factor Osx. Biochemical and Biophysical Research Communications, 2012, 420, 782-786.	1.0	16
141	V-Fos stimulates expression of the α1(III) collagen gene in NIH 3T3 cells. Biochemical and Biophysical Research Communications, 1986, 136, 1042-1048.	1.0	15
142	The mouse type-III procollagen-encoding gene: genomic cloning and complete DNA sequence. Gene, 1994, 147, 161-168.	1.0	15
143	Partial purification and characterization of the messenger RNA for cell fibronectin. Nucleic Acids Research, 1979, 6, 3471-3480.	6.5	14
144	Formation of a type I collagen RNA dimer by intermolecular base-pairing of a conserved sequence around the translation initiation site. Nucleic Acids Research, 1987, 15, 8935-8956.	6.5	14

3

#	Article	IF	CITATIONS
145	A 47â€bp Sequence of the First Intron of the Mouse Proα1 (II) Collagen Gene Is Sufficient to Direct Chondrocyte Expression. Annals of the New York Academy of Sciences, 1996, 785, 284-287.	1.8	14
146	cDNA Library Screening Using the SOS Recruitment System. BioTechniques, 2001, 30, 94-100.	0.8	14
147	Type I collagen structure, synthesis, and regulation. , 2020, , 295-337.		13
148	Control of Type I Collagen Genes in Scleroderma and Normal Fibroblasts. Rheumatic Disease Clinics of North America, 1990, 16, 109-123.	0.8	13
149	Type I Collagen. , 2002, , 189-XVIII.		12
150	Downregulation of a rheumatoid arthritis-related antigen (RA-A47) by ra-a47 antisense oligonucleotides induces inflammatory factors in chondrocytes. Journal of Cellular Physiology, 2003, 197, 94-102.	2.0	12
151	Characterization of Mesenchymal-Fibroblast Cells Using the Col1a2 Promoter/Enhancer. Methods in Molecular Biology, 2017, 1627, 139-161.	0.4	12
152	Wnt/ß-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death and Disease, 2021, 12, 521.	2.7	12
153	Osterix is required for cranial neural crest-derived craniofacial bone formation. Biochemical and Biophysical Research Communications, 2013, 432, 188-192.	1.0	11
154	Osteoblasts Clock in for Their Day Job. Cell, 2005, 122, 651-653.	13.5	9
155	Mesenchymeâ€specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. FASEB Journal, 2015, 29, 2555-2565.	0.2	9
156	Persistent Low Level of Osterix Accelerates Interleukin-6 Production and Impairs Regeneration after Tissue Injury. PLoS ONE, 2013, 8, e69859.	1.1	8
157	Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytes in Vitro and in Vivo. Journal of Biological Chemistry, 2006, 281, 31790-31800.	1.6	5
158	Purification of a novel factor which binds to the mouse $\hat{I}\pm 2$ (I) collagen promoter. FEBS Letters, 1993, 327, 325-331.	1.3	4
159	Deconstructing the Molecular Biology of Cartilage and Bone Formation. , 2002, , 279-295.		4
160	Joint Formation Requires Muscle Formation and Contraction. Developmental Cell, 2009, 16, 625-626.	3.1	3
161	Specificity protein 7 is not essential for tooth morphogenesis. Connective Tissue Research, 2014, 55, 88-91.	1.1	3

Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis., 1997, 209, 377.

BENOIT DE CROMBRUGGHE

#	Article	IF	CITATIONS
163	Termination and Antitermination in Transcription: Control of Gene Expression. , 1974, 3, 213-221.		3
164	[3] Structure and expression of collagen genes. Methods in Enzymology, 1987, 144, 61-74.	0.4	2
165	The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. , 2002, , 91-100.		1
166	Structural and Functional Studies on the Interstitial Collagen Genes. Novartis Foundation Symposium, 1985, 114, 20-33.	1.2	0
167	Mesenchymalâ€specific deletion of C/EBPβ suppressed pulmonary fibrosis. FASEB Journal, 2011, 25, 114.10.	0.2	Ο
168	DNA-Dependent Cell-Free Protein Synthesis. , 1977, , 603-625.		0
169	THE COLLAGEN GENE. , 1981, , 25-39.		Ο
170	Activity of a Chick Collagen Gene in Heterologous and Homologous Cell-Free Extracts. , 1984, , 161-177.		0