
Theresa L Whiteside

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of contracted manufacturing organization protocols on operations in an aca demically based Current Good Manufacturing Practice facility. Cytotherapy, 2022, 24, 32-36.	0.3	3
2	Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles. Neuro-Oncology, 2022, 24, 197-209.	0.6	21
3	Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression. Experientia Supplementum (2012), 2022, 113, 89-106.	0.5	4
4	NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death and Disease, 2022, 13, 371.	2.7	18
5	Proteomic and Metabolomic Profiles of T Cell-Derived Exosomes Isolated from Human Plasma. Cells, 2022, 11, 1965.	1.8	6
6	DPP4+ exosomes in AML patients' plasma suppress proliferation of hematopoietic progenitor cells. Leukemia, 2021, 35, 1925-1932.	3.3	22
7	Evaluation of Exosome Proteins by onâ€Bead Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 372-381.	1.1	52
8	The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opinion on Biological Therapy, 2021, 21, 241-258.	1.4	29
9	Exosomes in Breast Cancer – Mechanisms of Action and Clinical Potential. Molecular Cancer Research, 2021, 19, 935-945.	1.5	18
10	Proteomic profile of melanoma cellâ€derived small extracellular vesicles in patients' plasma: a potential correlate of melanoma progression. Journal of Extracellular Vesicles, 2021, 10, e12063.	5.5	38
11	IFNα Augments Clinical Efficacy of Regulatory T-cell Depletion with Denileukin Diftitox in Ovarian Cancer. Clinical Cancer Research, 2021, 27, 3661-3673.	3.2	6
12	Novel TGFβ Inhibitors Ameliorate Oral Squamous Cell Carcinoma Progression and Improve the Antitumor Immune Response of Anti–PD-L1 Immunotherapy. Molecular Cancer Therapeutics, 2021, 20, 1102-1111.	1.9	11
13	Small Extracellular Vesicles in Pre-Therapy Plasma Predict Clinical Outcome in Non-Small-Cell Lung Cancer Patients. Cancers, 2021, 13, 2041.	1.7	9
14	Tumor-Derived Exosomes (TEX) and Their Role in Immuno-Oncology. International Journal of Molecular Sciences, 2021, 22, 6234.	1.8	38
15	Breast Cancer Cell-Derived Adenosine Enhances Generation and Suppressor Function of Human Adaptive Regulatory T Cells. Journal of Personalized Medicine, 2021, 11, 754.	1.1	1
16	Proteomic profiles of melanoma cell-derived exosomes in plasma: discovery of potential biomarkers of melanoma progression. Melanoma Research, 2021, 31, 472-475.	0.6	4
17	Small Extracellular Vesicles from Head and Neck Squamous Cell Carcinoma Cells Carry a Proteomic Signature for Tumor Hypoxia. Cancers, 2021, 13, 4176.	1.7	5
18	Pneumococcal Extracellular Vesicles Modulate Host Immunity. MBio, 2021, 12, e0165721.	1.8	19

#	Article	IF	CITATIONS
19	Small extracellular vesicle-mediated bidirectional crosstalk between neutrophils and tumor cells. Cytokine and Growth Factor Reviews, 2021, 61, 16-26.	3.2	18
20	Immunoaffinity-Based Isolation of Melanoma Cell-Derived and T Cell-Derived Exosomes from Plasma of Melanoma Patients. Methods in Molecular Biology, 2021, 2265, 305-321.	0.4	16
21	Changes in circulating exosome molecular profiles following surgery/(chemo)radiotherapy: early detection of response in head and neck cancer patients. British Journal of Cancer, 2021, 125, 1677-1686.	2.9	24
22	The Role of Tumor-Derived Exosomes (TEX) in Shaping Anti-Tumor Immune Competence. Cells, 2021, 10, 3054.	1.8	12
23	Tumor-derived exosomes promote carcinogenesis of murine oral squamous cell carcinoma. Carcinogenesis, 2020, 41, 625-633.	1.3	60
24	Melanoma cell-derived exosomes in plasma of melanoma patients suppress functions of immune effector cells. Scientific Reports, 2020, 10, 92.	1.6	122
25	Incorporation of extracorporeal photopheresis into a reduced intensity conditioning regimen in myelodysplastic syndrome and aggressive lymphoma: results from ECOG 1402 and 1902. Transfusion, 2020, 60, 1867-1872.	0.8	3
26	Signaling of Tumor-Derived sEV Impacts Melanoma Progression. International Journal of Molecular Sciences, 2020, 21, 5066.	1.8	25
27	mRNA and miRNA Profiles of Exosomes from Cultured Tumor Cells Reveal Biomarkers Specific for HPV16-Positive and HPV16-Negative Head and Neck Cancer. International Journal of Molecular Sciences, 2020, 21, 8570.	1.8	16
28	Interplay between exosomes and autophagy: Are they partners in crime?. , 2020, , 197-212.		0
29	Increased small extracellular vesicle secretion after chemotherapy via upregulation of cholesterol metabolism in acute myeloid leukaemia. Journal of Extracellular Vesicles, 2020, 9, 1800979.	5.5	24
30	Validation of plasma-derived small extracellular vesicles as cancer biomarkers. Nature Reviews Clinical Oncology, 2020, 17, 719-720.	12.5	18
31	Tumor-derived exosomes promote angiogenesis via adenosine A2B receptor signaling. Angiogenesis, 2020, 23, 599-610.	3.7	73
32	Molecular profiles and immunomodulatory activities of glioblastoma-derived exosomes. Neuro-Oncology Advances, 2020, 2, vdaa056.	0.4	43
33	Arginase-1+ Exosomes from Reprogrammed Macrophages Promote Glioblastoma Progression. International Journal of Molecular Sciences, 2020, 21, 3990.	1.8	59
34	Purine Metabolites in Tumor-Derived Exosomes May Facilitate Immune Escape of Head and Neck Squamous Cell Carcinoma. Cancers, 2020, 12, 1602.	1.7	42
35	Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. International Journal of Molecular Sciences, 2020, 21, 4407.	1.8	236
36	Targeting CSPG4 for isolation of melanoma cell-derived exosomes from body fluids. Hno, 2020, 68, 100-105.	0.4	15

#	Article	IF	CITATIONS
37	Seroprevalences of autoantibodies and anti-infectious antibodies among Ghana's healthy population. Scientific Reports, 2020, 10, 2814.	1.6	6
38	CD44v3 protein-carrying tumor-derived exosomes in HNSCC patients' plasma as potential noninvasive biomarkers of disease activity. OncoImmunology, 2020, 9, 1747732.	2.1	40
39	Simultaneous Inhibition of Glycolysis and Oxidative Phosphorylation Triggers a Multi-Fold Increase in Secretion of Exosomes: Possible Role of 2′,3′-cAMP. Scientific Reports, 2020, 10, 6948.	1.6	30
40	Adenosine receptors regulate exosome production. Purinergic Signalling, 2020, 16, 231-240.	1.1	14
41	Role of exosome-associated adenosine in promoting angiogenesis. Vessel Plus, 2020, 2020, .	0.4	10
42	Human acute myeloid leukemia blast-derived exosomes in patient-derived xenograft mice mediate immune suppression. Experimental Hematology, 2019, 76, 60-66.e2.	0.2	22
43	Human regulatory T cells (Treg) and their response to cancer. Expert Review of Precision Medicine and Drug Development, 2019, 4, 215-228.	0.4	9
44	Proteomic Analysis of Plasma-Derived Exosomes in Defining Their Role as Biomarkers of Disease Progression, Response to Therapy and Outcome. Proteomes, 2019, 7, 27.	1.7	10
45	Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nature Communications, 2019, 10, 3000.	5.8	194
46	Isolation and Analysis of Tumorâ€Đerived Exosomes. Current Protocols in Immunology, 2019, 127, e91.	3.6	52
47	CD44(+) tumor cells promote early angiogenesis in head and neck squamous cell carcinoma. Cancer Letters, 2019, 467, 85-95.	3.2	53
48	Challenges in Exosome Isolation and Analysis in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 4684.	1.8	261
49	Impact of combination immunochemotherapies on progression of 4NQO-induced murine oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 1133-1141.	2.0	14
50	Proteomes of exosomes from HPV(+) or HPV(-) head and neck cancer cells: differential enrichment in immunoregulatory proteins. Oncolmmunology, 2019, 8, e1593808.	2.1	30
51	Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. Oncolmmunology, 2019, 8, e1593805.	2.1	110
52	Optimization of cell culture conditions for exosome isolation using mini-size exclusion chromatography (mini-SEC). Experimental Cell Research, 2019, 378, 149-157.	1.2	66
53	Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. International Journal of Molecular Sciences, 2019, 20, 5698.	1.8	40
54	Bioprinting exosome-like extracellular vesicle microenvironments. Bioprinting, 2019, 13, e00041.	2.9	34

#	Article	IF	CITATIONS
55	An Interferon-Driven Oxysterol-Based Defense against Tumor-Derived Extracellular Vesicles. Cancer Cell, 2019, 35, 33-45.e6.	7.7	125
56	Immunoaffinityâ€based isolation of melanoma cellâ€derived exosomes from plasma of patients with melanoma. Journal of Extracellular Vesicles, 2018, 7, 1435138.	5.5	210
57	Polyfunctionality of CD4+ TÂlymphocytes is increased after chemoradiotherapy of head and neck squamous cell carcinoma. Strahlentherapie Und Onkologie, 2018, 194, 392-402.	1.0	8
58	Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets, 2018, 22, 409-417.	1.5	93
59	Lymphoma exosomes reprogram the bone marrow. Blood, 2018, 131, 1635-1636.	0.6	6
60	Separation of plasma-derived exosomes into CD3(+) and CD3(â^') fractions allows for association of immune cell and tumour cell markers with disease activity in HNSCC patients. Clinical and Experimental Immunology, 2018, 192, 271-283.	1.1	78
61	Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Seminars in Immunology, 2018, 35, 69-79.	2.7	233
62	FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opinion on Therapeutic Targets, 2018, 22, 353-363.	1.5	119
63	Head and Neck Carcinoma Immunotherapy: Facts and Hopes. Clinical Cancer Research, 2018, 24, 6-13.	3.2	71
64	Therapeutic reduction of cell-mediated immunosuppression in mycosis fungoides and Sézary syndrome. Cancer Immunology, Immunotherapy, 2018, 67, 423-434.	2.0	23
65	Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer Patients. Clinical Cancer Research, 2018, 24, 896-905.	3.2	464
66	The potential of tumor-derived exosomes for noninvasive cancer monitoring: an update. Expert Review of Molecular Diagnostics, 2018, 18, 1029-1040.	1.5	40
67	Harmonization of exosome isolation from culture supernatants for optimized proteomics analysis. PLoS ONE, 2018, 13, e0205496.	1.1	36
68	Molecular and Functional Profiles of Exosomes From HPV(+) and HPV(â^') Head and Neck Cancer Cell Lines. Frontiers in Oncology, 2018, 8, 445.	1.3	50
69	Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence. Clinical and Experimental Immunology, 2018, 194, 67-78.	1.1	81
70	Exosomes in acute myeloid leukemia inhibit hematopoiesis. Current Opinion in Hematology, 2018, 25, 279-284.	1.2	35
71	The emerging role of plasma exosomes in diagnosis, prognosis and therapies of patients with cancer. Wspolczesna Onkologia, 2018, 2018, 38-40.	0.7	38
72	Exosomes from HNSCC Promote Angiogenesis through Reprogramming of Endothelial Cells. Molecular Cancer Research, 2018, 16, 1798-1808.	1.5	143

#	Article	IF	CITATIONS
73	IRX-2 natural cytokine biologic for immunotherapy in patients with head and neck cancers. OncoTargets and Therapy, 2018, Volume 11, 3731-3746.	1.0	16
74	Microvessel density in head and neck squamous cell carcinoma. European Archives of Oto-Rhino-Laryngology, 2018, 275, 1845-1851.	0.8	20
75	Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Scientific Reports, 2018, 8, 12905.	1.6	135
76	The microbiome in autoimmune diseases. Clinical and Experimental Immunology, 2018, 195, 74-85.	1.1	311
77	Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience, 2018, 5, 75-87.	0.9	36
78	Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer. Clinical Cancer Research, 2017, 23, 4843-4854.	3.2	275
79	Targeting adenosine in cancer immunotherapy: a review of recent progress. Expert Review of Anticancer Therapy, 2017, 17, 527-535.	1.1	67
80	Exosomes carrying immunoinhibitory proteins and their role in cancer. Clinical and Experimental Immunology, 2017, 189, 259-267.	1.1	127
81	The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia, 2017, 31, 1259-1268.	3.3	178
82	Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Scientific Reports, 2017, 7, 14684.	1.6	152
83	Isolation of Exosomes for the Purpose of Protein Cargo Analysis with the Use of Mass Spectrometry. Methods in Molecular Biology, 2017, 1654, 291-307.	0.4	22
84	Isolation of Biologically Active Exosomes from Plasma of Patients with Cancer. Methods in Molecular Biology, 2017, 1633, 257-265.	0.4	25
85	Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. Oncolmmunology, 2017, 6, e1261243.	2.1	143
86	The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Future Oncology, 2017, 13, 2583-2592.	1.1	113
87	Exosomes in Cancer: Another Mechanism of Tumor-Induced Immune Suppression. Advances in Experimental Medicine and Biology, 2017, 1036, 81-89.	0.8	55
88	Stimulatory role of exosomes in the context of therapeutic anticancer vaccines. Biotarget, 2017, 1, 5-5.	0.5	13
89	Profiling of plasma-derived extracellular vesicles cargo for diagnosis of pancreatic malignancy. Annals of Translational Medicine, 2017, 5, 501-501.	0.7	2
90	The role of tumor-derived exosomes in epithelial mesenchymal transition (EMT). Translational Cancer Research, 2017, 6, S90-S92.	0.4	22

#	Article	IF	CITATIONS
91	Therapeutic targeting of oncogenic KRAS in pancreatic cancer by engineered exosomes. Translational Cancer Research, 2017, 6, S1406-S1408.	0.4	5
92	Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression. Vaccines, 2016, 4, 35.	2.1	59
93	Exosomes and tumor-mediated immune suppression. Journal of Clinical Investigation, 2016, 126, 1216-1223.	3.9	439
94	Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Scientific Reports, 2016, 6, 20254.	1.6	260
95	Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer. Journal of Extracellular Vesicles, 2016, 5, 29289.	5.5	249
96	Mutant KRAS Conversion of Conventional T Cells into Regulatory T Cells. Cancer Immunology Research, 2016, 4, 354-365.	1.6	114
97	Plasma-derived exosomes in acute myeloid leukemia for detection of minimal residual disease: are we ready?. Expert Review of Molecular Diagnostics, 2016, 16, 623-629.	1.5	39
98	Tumor-Derived Exosomes and Their Role in Cancer Progression. Advances in Clinical Chemistry, 2016, 74, 103-141.	1.8	549
99	Emerging Opportunities and Challenges in Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 1845-1855.	3.2	242
100	Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study. Journal of Neuro-Oncology, 2016, 130, 517-527.	1.4	49
101	Expression and clinical significance of MAGE and NY-ESO-1 cancer-testis antigens in adenoid cystic carcinoma of the head and neck. Head and Neck, 2016, 38, 1008-1016.	0.9	14
102	Biological markers of prognosis, response to therapy and outcome in ovarian carcinoma. Expert Review of Molecular Diagnostics, 2016, 16, 811-826.	1.5	41
103	Prolonged intralymphatic delivery of dendritic cells through implantable lymphatic ports in patients with advanced cancer. , 2016, 4, 24.		19
104	Dendritic cellâ€based autologous tumor vaccines for head and neck squamous cell carcinoma. Head and Neck, 2016, 38, E494-501.	0.9	17
105	Therapeutic Vaccination With Dendritic Cells Loaded With Autologous HIV Type 1–Infected Apoptotic Cells. Journal of Infectious Diseases, 2016, 213, 1400-1409.	1.9	40
106	Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro-Oncology, 2016, 18, 1157-1168.	0.6	69
107	Phenotypic and functional characteristics of CD39 ^{high} human regulatory B cells (Breg). Oncolmmunology, 2016, 5, e1082703.	2.1	99
108	Circulating Exosomes Carrying an Immunosuppressive Cargo Interfere with Adoptive Cell Therapy in Acute Myeloid Leukemia. Blood, 2016, 128, 1609-1609.	0.6	5

#	Article	IF	CITATIONS
109	Phase 1 Clinical Trial of Adoptive Immunotherapy Using "Off-the-Shelf" Activated Natural Killer Cells (aNK) in Patients with Refractory/Relapsed Acute Myeloid Leukemia. Blood, 2016, 128, 1649-1649.	0.6	1
110	Expression of Submaxillary Gland Androgen-regulated Protein 3A (SMR3A) in Adenoid Cystic Carcinoma of the Head and Neck. Anticancer Research, 2016, 36, 611-5.	0.5	2
111	The role of regulatory T cells in cancer immunology. ImmunoTargets and Therapy, 2015, 4, 159.	2.7	96
112	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. OncoImmunology, 2015, 4, e998538.	2.1	119
113	The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Review of Molecular Diagnostics, 2015, 15, 1293-1310.	1.5	117
114	Information transfer by exosomes: A new frontier in hematologic malignancies. Blood Reviews, 2015, 29, 281-290.	2.8	74
115	Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncolmmunology, 2015, 4, e1008347.	2.1	91
116	CTLA-4+ Regulatory T Cells Increased in Cetuximab-Treated Head and Neck Cancer Patients Suppress NK Cell Cytotoxicity and Correlate with Poor Prognosis. Cancer Research, 2015, 75, 2200-2210.	0.4	217
117	RE: Effect of Nasopharyngeal Carcinoma-Derived Exosomes on Human Regulatory T Cells. Journal of the National Cancer Institute, 2015, 107, djv276.	3.0	3
118	Clinical Impact of Regulatory T cells (Treg) in Cancer and HIV. Cancer Microenvironment, 2015, 8, 201-207.	3.1	23
119	CTLA-4+ Regulatory T Cells Increased in Cetuximab-Treated Head and Neck Cancer Patients Suppress NK Cell Cytotoxicity and Correlate with Poor Prognosis. Cancer Research, 2015, 75, 2200-2210.	0.4	126
120	Immunotherapy for acute leukemia. Aging, 2015, 7, 354-355.	1.4	0
121	Isolation and Characterization of CD34+ Blast-Derived Exosomes in Acute Myeloid Leukemia. PLoS ONE, 2014, 9, e103310.	1.1	155
122	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
123	Human CD4+CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clinical and Experimental Immunology, 2014, 177, 531-543.	1.1	220
124	Plasma Exosomes as Markers of Therapeutic Response in Patients with Acute Myeloid Leukemia. Frontiers in Immunology, 2014, 5, 160.	2.2	187
125	Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression?. Cancer Immunology, Immunotherapy, 2014, 63, 67-72.	2.0	144
126	Induced regulatory T cells in inhibitory microenvironments created by cancer. Expert Opinion on Biological Therapy, 2014, 14, 1411-1425.	1.4	76

#	Article	IF	CITATIONS
127	Isolation of biologically-active exosomes from human plasma. Journal of Immunological Methods, 2014, 411, 55-65.	0.6	363
128	Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochemical Society Transactions, 2013, 41, 245-251.	1.6	341
129	Immune Responses to Cancer: Are They Potential Biomarkers of Prognosis?. Frontiers in Oncology, 2013, 3, 107.	1.3	70
130	Adenosine and Prostaglandin E2 Production by Human Inducible Regulatory T Cells in Health and Disease. Frontiers in Immunology, 2013, 4, 212.	2.2	53
131	Effects of Adjuvant Chemoradiotherapy on the Frequency and Function of Regulatory T Cells in Patients with Head and Neck Cancer. Clinical Cancer Research, 2013, 19, 6585-6596.	3.2	90
132	Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. British Journal of Cancer, 2013, 109, 2629-2635.	2.9	243
133	Exosomes in Plasma of Patients with Ovarian Carcinoma: Potential Biomarkers of Tumor Progression and Response to Therapy. Gynecology & Obstetrics (Sunnyvale, Calif), 2013, s4, 3.	0.1	109
134	CD26 expression and adenosine deaminase activity in regulatory T cells (Treg) and CD4 ⁺ T effector cells in patients with head and neck squamous cell carcinoma. Oncolmmunology, 2012, 1, 659-669.	2.1	60
135	Phenotypic and functional characteristics of CD4 ⁺ CD39 ⁺ FOXP3 ⁺ and CD4 ⁺ CD39 ⁺ FOXP3 ^{neg} Tâ€cell subsets in cancer patients. European Journal of Immunology, 2012, 42, 1876-1885.	1.6	99
136	What are regulatory T cells (Treg) regulating in cancer and why?. Seminars in Cancer Biology, 2012, 22, 327-334.	4.3	242
137	Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-Â1. Haematologica, 2011, 96, 1302-1309.	1.7	375
138	Mechanisms of T-cell protection from death by IRX-2: a new immunotherapeutic. Cancer Immunology, Immunotherapy, 2011, 60, 495-506.	2.0	24
139	Reciprocal granzyme/perforin-mediated death of human regulatory and responder T cells is regulated by interleukin-2 (IL-2). Journal of Molecular Medicine, 2010, 88, 577-588.	1.7	33
140	Tumor-Derived Microvesicles Induce, Expand and Up-Regulate Biological Activities of Human Regulatory T Cells (Treg). PLoS ONE, 2010, 5, e11469.	1.1	379
141	Generation and Accumulation of Immunosuppressive Adenosine by Human CD4+CD25highFOXP3+ Regulatory T Cells. Journal of Biological Chemistry, 2010, 285, 7176-7186.	1.6	334
142	Immune responses to malignancies. Journal of Allergy and Clinical Immunology, 2010, 125, S272-S283.	1.5	160
143	Adenosine and Prostaglandin E2 Cooperate in the Suppression of Immune Responses Mediated by Adaptive Regulatory T Cells. Journal of Biological Chemistry, 2010, 285, 27571-27580.	1.6	140
144	Tumor-Derived Microvesicles Promote Regulatory T Cell Expansion and Induce Apoptosis in Tumor-Reactive Activated CD8+ T Lymphocytes. Journal of Immunology, 2009, 183, 3720-3730.	0.4	479

#	Article	IF	CITATIONS
145	Human Circulating CD4+CD25highFoxp3+ Regulatory T Cells Kill Autologous CD8+ but Not CD4+ Responder Cells by Fas-Mediated Apoptosis. Journal of Immunology, 2009, 182, 1469-1480.	0.4	171
146	Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection. Vaccine Journal, 2009, 16, 233-240.	3.2	26
147	Tumorâ€derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression. Head and Neck, 2009, 31, 371-380.	0.9	89
148	IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death. Cell Death and Differentiation, 2009, 16, 708-718.	5.0	67
149	Expression and signaling of Toll-like receptor 4 (TLR4) and MyD88 in ovarian carcinoma cells. Journal of Clinical Oncology, 2009, 27, e16508-e16508.	0.8	2
150	The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27, 5904-5912.	2.6	1,869
151	T Regulatory Type 1 Cells in Squamous Cell Carcinoma of the Head and Neck: Mechanisms of Suppression and Expansion in Advanced Disease. Clinical Cancer Research, 2008, 14, 3706-3715.	3.2	143
152	Mechanisms of Suppression Used by Regulatory T Cells in Patients Newly Diagnosed with Acute Myeloid Leukemia. Blood, 2008, 112, 2938-2938.	0.6	3
153	CD8+ T cell Recognition of Polymorphic Wild Type Sequence p53 65–73 Peptides in Squamous Cell Carcinoma of the Head and Neck. FASEB Journal, 2008, 22, 1079.15.	0.2	Ο
154	A Unique Subset of CD4+CD25highFoxp3+ T Cells Secreting Interleukin-10 and Transforming Growth Factor-β1 Mediates Suppression in the Tumor Microenvironment. Clinical Cancer Research, 2007, 13, 4345-4354.	3.2	393
155	The Frequency and Suppressor Function of CD4+CD25highFoxp3+ T Cells in the Circulation of Patients with Squamous Cell Carcinoma of the Head and Neck. Clinical Cancer Research, 2007, 13, 6301-6311.	3.2	244
156	Expansion of Human T Regulatory Type 1 Cells in the Microenvironment of Cyclooxygenase 2 Overexpressing Head and Neck Squamous Cell Carcinoma. Cancer Research, 2007, 67, 8865-8873.	0.4	136
157	The Role of Death Receptor Ligands in Shaping Tumor Microenvironment. Immunological Investigations, 2007, 36, 25-46.	1.0	44
158	Head and neck squamous cell carcinoma cell lines: Established models and rationale for selection. Head and Neck, 2007, 29, 163-188.	0.9	209
159	Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunology, Immunotherapy, 2007, 56, 1429-1442.	2.0	82
160	A randomized phase II p53 vaccine trial comparing subcutaneous direct administration with intravenous peptide-pulsed dendritic cells in high risk ovarian cancer patients. Journal of Clinical Oncology, 2007, 25, 3011-3011.	0.8	7
161	Human Tumor-Derived vs Dendritic Cell-Derived Exosomes Have Distinct Biologic Roles and Molecular Profiles. Immunologic Research, 2006, 36, 247-254.	1.3	109
162	Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic intervention. Seminars in Cancer Biology, 2006, 16, 3-15.	4.3	410

#	Article	IF	CITATIONS
163	Immune Escape Associated with Functional Defects in Antigen-Processing Machinery in Head and Neck Cancer. Clinical Cancer Research, 2006, 12, 3890-3895.	3.2	200
164	Lymphocyte homeostasis and the antitumor immune response. Expert Review of Clinical Immunology, 2005, 1, 369-378.	1.3	7
165	Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clinical Cancer Research, 2005, 11, 1010-20.	3.2	337
166	Antigen-Processing Machinery in Human Dendritic Cells: Up-Regulation by Maturation and Down-Regulation by Tumor Cells. Journal of Immunology, 2004, 173, 1526-1534.	0.4	86
167	Down-regulation of ?-chain expression in T cells: a biomarker of prognosis in cancer?. Cancer Immunology, Immunotherapy, 2004, 53, 865-78.	2.0	134
168	Title is missing!. Journal of Neuro-Oncology, 2003, 64, 13-20.	1.4	16
169	Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clinical Cancer Research, 2003, 9, 641-9.	3.2	74
170	T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clinical Cancer Research, 2003, 9, 5113-9.	3.2	195
171	Cytokine Assays. BioTechniques, 2002, 33, S4-S15.	0.8	24
172	Tumor-induced death of immune cells: its mechanisms and consequences. Seminars in Cancer Biology, 2002, 12, 43-50.	4.3	131
173	Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clinical Cancer Research, 2002, 8, 2553-62.	3.2	275
174	Cytokine assays. BioTechniques, 2002, Suppl, 4-8, 10, 12-5.	0.8	5
175	Isolation of Human NK Cells and Generation of LAK Activity. , 2001, Chapter 7, Unit 7.7.		6
176	Measurement of Cytotoxic Activity of NK/LAK Cells. , 2001, Chapter 7, Unit 7.18.		16
177	Immunobiology and immunotherapy of head and neck cancer. Current Oncology Reports, 2001, 3, 46-55.	1.8	32
178	The number of intratumoral dendritic cells and ?-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer, 2001, 91, 2136-2147.	2.0	145
179	The number of intratumoral dendritic cells and ζ-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. , 2001, 91, 2136.		1
180	Competition of peptide-MHC class I tetrameric complexes with anti-CD3 provides evidence for specificity of peptide binding to the TCR complex. Cytometry, 2000, 41, 321-328.	1.8	50

#	Article	IF	CITATIONS
181	Interleukin-2 expression in human carcinoma cell lines and its role in cell cycle progression. Oncogene, 2000, 19, 514-525.	2.6	30
182	Dendritic Cell/Peptide Cancer Vaccines: Clinical Responsiveness and Epitope Spreading. Immunological Investigations, 2000, 29, 121-125.	1.0	61
183	Cytokine mRNA profiles in Epstein-Barr virus-associated post-transplant lymphoproliferative disorders. Clinical Transplantation, 1999, 13, 39-44.	0.8	37
184	lonizing radiation stimulates octamer factor DNA binding activity in human carcinoma cells. Molecular and Cellular Biochemistry, 1999, 199, 209-215.	1.4	30
185	Signaling defects in T lymphocytes of patients with malignancy. Cancer Immunology, Immunotherapy, 1999, 48, 346-352.	2.0	148
186	Immunotherapy with effector cells and IL-2 of lymph node metastases of human squamous-cell carcinoma of the head and neck established in nude mice. , 1999, 82, 532-537.		18
187	Suppression of cytokine-mediated β2-integrin activation on circulating neutrophils in critically ill patients. Journal of Leukocyte Biology, 1999, 66, 83-89.	1.5	41
188	Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Research, 1999, 59, 5356-64.	0.4	168
189	Absence of B7.1-CD28/CTLA-4-mediated co-stimulation in human NK cells. European Journal of Immunology, 1998, 28, 780-786.	1.6	58
190	The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunology, Immunotherapy, 1998, 46, 175-184.	2.0	108
191	Ionizing Radiation and TNF-a and Stimulated Expression of a1-Antichymotrypsin Gene in Human Squamous Carcinoma Cells. Acta Oncológica, 1998, 37, 475-478.	0.8	9
192	Natural Killer Cells and Tumor Therapy. Current Topics in Microbiology and Immunology, 1998, 230, 221-244.	0.7	111
193	Human tumor antigen-specific T lymphocytes and interleukin-2-activated natural killer cells: comparisons of antitumor effects in vitro and in vivo. Clinical Cancer Research, 1998, 4, 1135-45.	3.2	28
194	Immune cells in the tumor microenvironment. Mechanisms responsible for functional and signaling defects. Advances in Experimental Medicine and Biology, 1998, 451, 167-71.	0.8	24
195	Title is missing!. Molecular and Cellular Biochemistry, 1997, 173, 197-201.	1.4	5
196	Phase IB trial of picibanil (OK-432) as an immunomodulator in patients with resected high-risk melanoma. Cancer Immunology, Immunotherapy, 1997, 44, 137-149.	2.0	18
197	Correlation of constitutive activation of raf-1 with morphological transformation and abrogation of tyrosine phosphorylation of distinct sets of proteins in human squamous carcinoma cells. , 1997, 18, 1-6.		7
198	Human gastric carcinoma transduced with theIL-2 gene: Increased sensitivity to immune effector cellsin vitro andin vivo. , 1997, 72, 174-183.		11

#	Article	IF	CITATIONS
199	Correlation of constitutive activation of rafâ€1 with morphological transformation and abrogation of tyrosine phosphorylation of distinct sets of proteins in human squamous carcinoma cells. Molecular Carcinogenesis, 1997, 18, 1-6.	1.3	1
200	Identification and partial purification of a human natural killer cell proliferation-inducing factor. Journal of Biosciences, 1996, 21, 455-469.	0.5	2
201	Partial purification and characterization of a novel human factor that augments the expression of class I MHC antigens on tumour cells. Journal of Biosciences, 1996, 21, 13-25.	0.5	3
202	Divergent effects of Fcl ³ RIIIA ligands on the functional activities of human natural killer cellsin vitro. European Journal of Immunology, 1996, 26, 1199-1203.	1.6	28
203	Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. , 1996, 68, 276-284.		81
204	Activation of Raf by ionizing radiation. Nature, 1996, 382, 813-816.	13.7	162
205	Clinical Trial to Assess the Safety, Feasibility, and Efficacy of Transferring a Potentially Anti-Arthritic Cytokine Gene to Human Joints with Rheumatoid Arthritis. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Human Gene Therapy, 1996, 7, 1261-1280.	1.4	254
206	Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. International Journal of Cancer, 1996, 68, 276-284.	2.3	1
207	Antitumor effects of cytolytic T lymphocytes (CTL) and natural killer (NK) cells in head and neck cancer. Anticancer Research, 1996, 16, 2357-64.	0.5	12
208	The Role of Immune Effector Cells in Immunotherapy of Head and Neck Cancer Nihon Kikan Shokudoka Gakkai Kaiho, 1995, 46, 71-83.	0.0	0
209	HLA restriction and T-cell-receptor VÎ ² gene expression of cytotoxic T lymphocytes reactive with human squamous-cell carcinoma of the head and neck. International Journal of Cancer, 1994, 57, 297-305.	2.3	27
210	Sensorineural Hearing Loss From Quinolinic Acid. Laryngoscope, 1994, 101, 176???181.	1.1	10
211	Comparison of in Vivo and in Vitro Prostaglandin E ₂ Production by Squamous Cell Carcinoma of the Head and Neck. Otolaryngology - Head and Neck Surgery, 1994, 111, 189-196.	1.1	16
212	Human Natural Killer Cells in Health and Disease. BioDrugs, 1994, 1, 56-66.	0.7	14
213	Adoptive Immunotherapy of Cancer. BioDrugs, 1994, 2, 13-22.	0.7	8
214	Tumor-infiltrating lymphocytes: their phenotype, functions and clinical use. Cancer Immunology, Immunotherapy, 1994, 39, 15-21.	2.0	12
215	Cytokines and cytokine measurements in a clinical laboratory. Vaccine Journal, 1994, 1, 257-260.	2.6	46
216	Abnormalities in the p53 gene in tumors and cell lines of human squamous-cell carcinomas of the head and neck. International Journal of Cancer, 1993, 54, 322-327.	2.3	30

#	Article	IF	CITATIONS
217	Usage of T-cell receptor Vl² chain genes in fresh and cultured tumor-infiltrating lymphocytes from human melanoma. International Journal of Cancer, 1993, 54, 383-390.	2.3	38
218	Evidence for local and systemic activation of immune cells by peritumoral injections of interleukin 2 in patients with advanced squamous cell carcinoma of the head and neck. Cancer Research, 1993, 53, 5654-62.	0.4	76
219	Generation and characterization of ex vivo propagated autologous CD8+ cells used for adoptive immunotherapy of patients infected with human immunodeficiency virus. Blood, 1993, 81, 2085-92.	0.6	13
220	Interleukin 2 Receptors on Squamous Cell Carcinomas of the Head and Neck. Acta Oto-Laryngologica, 1992, 112, 370-375.	0.3	11
221	Lymphokine-activated killer cell and natural killer cell activities in patients with systemic sclerosis. Arthritis and Rheumatism, 1992, 35, 694-699.	6.7	21
222	Phenotypic and functional characteristics of lymphocytes isolated from liver biopsy specimens from patients with active liver disease. Hepatology, 1992, 15, 816-823.	3.6	63
223	Extravasation of antitumor effector cells. Invasion & Metastasis, 1992, 12, 128-46.	0.5	19
224	Preliminary trial of nonrecombinant interferon alpha in recurrent squamous cell carcinoma of the head and neck. Head and Neck, 1991, 13, 15-21.	0.9	40
225	Effects of cytokines on in vitro growth of tumor-infiltrating lymphocytes obtained from human primary and metastatic liver tumors. Cancer Immunology, Immunotherapy, 1991, 32, 280-288.	2.0	43
226	Serial monitoring of immunologic function and phenotype of lymphocytes in the blood of transplanted patients randomized to cyclosporine or FK 506. Transplantation Proceedings, 1991, 23, 3047-51.	0.3	6
227	Cancer therapy with tumor-infiltrating lymphocytes: evaluation of potential and limitations. In Vivo, 1991, 5, 553-9.	0.6	6
228	Chromosomal breakpoints in cholangiocarcinoma cell lines. Genes Chromosomes and Cancer, 1990, 2, 300-310.	1.5	53
229	Clonal analysis of tumor-infiltrating lymphocytes from human primary and metastatic liver tumors. International Journal of Cancer, 1990, 46, 878-883.	2.3	43
230	Natural killer cytotoxicity in the diagnosis of immune dysfunction: Criteria for a reproducible assay. Journal of Clinical Laboratory Analysis, 1990, 4, 102-114.	0.9	170
231	The biology of human natural killer cells. Annali Dell'Istituto Superiore Di Sanita, 1990, 26, 335-48.	0.2	8
232	Serum and tissue banks for biological markers. Immunology Series, 1990, 53, 55-68.	0.3	0
233	Lymphokine-activated killer cell activity in patients with primary and metastatic malignant liver tumors. Hepatology, 1989, 10, 221-227.	3.6	8
234	Tumor-infiltrating lymphocytes from human solid tumors: antigen-specific killer T lymphocytes of activated natural killer lymphocytes. Immunology Series, 1989, 48, 139-57.	0.3	2

#	Article	IF	CITATIONS
235	Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Research, 1989, 49, 5167-75.	0.4	201
236	Heterogeneous synthetic phenotype of cloned scleroderma fibroblasts may be due to aberrant regulation in the synthesis of connective tissues. Arthritis and Rheumatism, 1988, 31, 1221-1229.	6.7	34
237	Cytolytic antitumor effector cells in long-term cultures of human tumor-infiltrating lymphocytes in recombinant interleukin 2. Cancer Immunology, Immunotherapy, 1988, 26, 1-10.	2.0	63
238	Characterization of novel anti-tumor effector cells in long-term cultures of human tumor-infiltrating lymphocytes. Transplantation Proceedings, 1988, 20, 347-50.	0.3	8
239	In vitro generation and antitumor activity of adherent lymphokine-activated killer cells from the blood of patients with brain tumors. Cancer Research, 1988, 48, 6069-75.	0.4	24
240	Cloning and proliferating precursor frequencies of tumor-infiltrating lymphocytes from human solid tumors. Transplantation Proceedings, 1988, 20, 342-3.	0.3	15
241	Analysis of Intestinal Lymphocyte Subpopulations in Patients with Acquired Immunodeficiency Syndrome (AIDS) and AIDS-Related Complex. American Journal of Clinical Pathology, 1987, 87, 356-364.	0.4	68
242	Expansion of tumor-infiltrating lymphocytes from human solid tumors in interleukin-2. Progress in Clinical and Biological Research, 1987, 244, 213-22.	0.2	1
243	Persistence of scleroderma-like phenotype in normal fibroblasts after prolonged exposure to soluble mediators from mononuclear cells. Arthritis and Rheumatism, 1986, 29, 54-64.	6.7	36
244	Production of a glycosaminoglycan stimulatory factor by cloned human t lymphocytes activated in vitro. Arthritis and Rheumatism, 1986, 29, 1071-1077.	6.7	6
245	Separation, phenotyping and limiting dilution analysis of T-lymphocytes infiltrating human solid tumors. International Journal of Cancer, 1986, 37, 803-811.	2.3	129
246	Soluble mediators from mononuclear cells increase the synthesis of glycosaminoglycan by dermal fibroblast cultures derived from normal subjects and progressive systemic sclerosis patients. Arthritis and Rheumatism, 1985, 28, 188-197.	6.7	58
247	Lymphocytes in the skin of patients with progressive systemic sclerosis. Arthritis and Rheumatism, 1984, 27, 645-653.	6.7	356
248	Clinical and serologic study of sjögren's syndrome in patients with progressive systemic sclerosis. Arthritis and Rheumatism, 1983, 26, 500-508.	6.7	89
249	Suppressor cell function and t lymphocyte subpopulations in peripheral blood of patients with progressive systemic sclerosis. Arthritis and Rheumatism, 1983, 26, 841-847.	6.7	79
250	Imbalance of t-cell subpopulations does not result in defective helper function in chronic lymphocytic leukemia. Cancer, 1981, 48, 1754-1760.	2.0	16
251	Discrepancies betweenin vivo andin vitro responses toCandida antigen in patients with progressive systemic sclerosis (PSS; scleroderma). Journal of Clinical Immunology, 1981, 1, 250-256.	2.0	4
252	Immunodiagnosis of mesothelioma. Use of antimesothelial cell serum in an indirect immunofluorescence assay. Cancer, 1979, 43, 2288-2296.	2.0	43

#	Article	IF	CITATIONS
253	Immunologic characterization of chronic lymphocytic leukemia cells. Cancer, 1977, 39, 1109-1118.	2.0	42
254	Use of Antibody to Membrane Adenosine Triphosphatase in the Study of Bacterial Relationships. Journal of Bacteriology, 1971, 105, 957-967.	1.0	38
255	Diversity of Extracellular Vesicles (EV) in Plasma of Cancer Patients. Physiology, 0, , .	4.0	Ο