
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11086326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycobacterial Lipopeptides Elicit CD4+ CTLs in <i>Mycobacterium tuberculosis</i> -Infected Humans. Journal of Immunology, 2008, 180, 3436-3446.	0.8	54
2	Expression and Antimicrobial Function of Bactericidal Permeability-Increasing Protein in Cystic Fibrosis Patients. Infection and Immunity, 2006, 74, 4708-4714.	2.2	33
3	Toll-Like Receptors: Sentinels of Host Defence against Bacterial Infection. International Archives of Allergy and Immunology, 2006, 139, 75-85.	2.1	52
4	Endotoxin-Induced Expression of Murine Bactericidal Permeability/Increasing Protein Is Mediated Exclusively by Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-Î2-Dependent Pathways. Journal of Immunology, 2006, 176, 522-528.	0.8	33
5	Regulation and Signal Transduction of Tollâ€Like Receptors in Human Chorioncarcinoma Cell Lines. American Journal of Reproductive Immunology, 2005, 53, 77-84.	1.2	46
6	Profile of Candida albicans- Secreted Aspartic Proteinase Elicited during Vaginal Infection. Infection and Immunity, 2005, 73, 1828-1835.	2.2	62
7	Inverse Correlation of Maturity and Antibacterial Activity in Human Dendritic Cells. Journal of Immunology, 2005, 174, 4203-4209.	0.8	52
8	Induction of SAP7 Correlates with Virulence in an Intravenous Infection Model of Candidiasis but Not in a Vaginal Infection Model in Mice. Infection and Immunity, 2005, 73, 7061-7063.	2.2	32
9	Protection against Progressive Leishmaniasis by IFN-β. Journal of Immunology, 2004, 172, 7574-7582.	0.8	62
10	Control ofLeishmania major in the absence of Tyk2 kinase. European Journal of Immunology, 2004, 34, 519-529.	2.9	32
11	A synthetic, non-peptide CXCR2 antagonist blocks MIP-2-induced neutrophil migration in mice. Immunobiology, 2004, 209, 225-233.	1.9	22
12	Cyclosporin A-mediated killing of Leishmania major by macrophages is independent of reactive nitrogen and endogenous TNF-α and is not inhibited by IL-10 and 13. Parasitology Research, 2003, 89, 221-227.	1.6	13
13	Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. European Journal of Immunology, 2003, 33, 1224-1234.	2.9	92
14	High Levels of Susceptibility and T Helper 2 Response in MyD88-Deficient Mice Infected with Leishmania major Are Interleukin-4 Dependent. Infection and Immunity, 2003, 71, 7215-7218.	2.2	59
15	Human NKT Cells Express Granulysin and Exhibit Antimycobacterial Activity. Journal of Immunology, 2003, 170, 3154-3161.	0.8	163
16	Translational Control of Inducible Nitric Oxide Synthase by IL-13 and Arginine Availability in Inflammatory Macrophages. Journal of Immunology, 2003, 171, 4561-4568.	0.8	160
17	Differential Functions of IL-4 Receptor Types I and II for Dendritic Cell Maturation and IL-12 Production and Their Dependency on GM-CSF. Journal of Immunology, 2002, 169, 3574-3580.	0.8	130
18	Induction of TNF in Human Alveolar Macrophages As a Potential Evasion Mechanism of Virulent <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2002, 168, 1328-1337.	0.8	124

#	Article	IF	CITATIONS
19	Expression of Inducible Nitric Oxide Synthase in Skin Lesions of Patients with American Cutaneous Leishmaniasis. Infection and Immunity, 2002, 70, 4638-4642.	2.2	74
20	Nitric Oxide in Leishmaniasis. , 2002, , 361-377.		5
21	Migration of Salmonella typhimurium -harboring bone marrow-derived dendritic cells towards the chemokines CCL19 and CCL21. Microbial Pathogenesis, 2002, 32, 207-218.	2.9	33
22	Suppression of type 2 NO-synthase activity in macrophages by Candida albicans. International Journal of Medical Microbiology, 2001, 290, 659-668.	3.6	35
23	Lack of gastritis and of an adaptive immune response in interferon regulatory factor-1-deficient mice infected withHelicobacter pylori. European Journal of Immunology, 2001, 31, 396-402.	2.9	44
24	T-cell release of granulysin contributes to host defense in leprosy. Nature Medicine, 2001, 7, 174-179.	30.7	171
25	Constitutive Expression of Macrophage-Inflammatory Protein 2 (MIP-2) mRNA in Bone Marrow Gives Rise to Peripheral Neutrophils with Preformed MIP-2 Protein. Journal of Immunology, 2001, 167, 4635-4643.	0.8	52
26	Visceral Leishmaniasis in a German Child Who Had Never Entered a Known Endemic Area: Case Report and Review of the Literature. Clinical Infectious Diseases, 2001, 32, 302-306.	5.8	125
27	The Production of IFN-Î ³ by IL-12/IL-18-Activated Macrophages Requires STAT4 Signaling and Is Inhibited by IL-4. Journal of Immunology, 2001, 166, 3075-3082.	0.8	168
28	Rapidly Fatal Leishmaniasis in Resistant C57BL/6 Mice Lacking TNF. Journal of Immunology, 2001, 166, 4012-4019.	0.8	188
29	Regulation of type 2 nitric oxide synthase by type 1 interferons in macrophages infected withLeishmania major. European Journal of Immunology, 2000, 30, 2257-2267.	2.9	58
30	The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Molecular Microbiology, 2000, 38, 435-445.	2.5	225
31	Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 2000, 12, 64-76.	5.5	812
32	The role of nitric oxide in innate immunity. Immunological Reviews, 2000, 173, 17-26.	6.0	572
33	IL-10 Converts Human Dendritic Cells into Macrophage-Like Cells with Increased Antibacterial Activity Against Virulent <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2000, 165, 978-987.	0.8	138
34	Deficiency in the Transcription Factor Interferon Regulatory Factor (Irf)-2 Leads to Severely Compromised Development of Natural Killer and T Helper Type 1 Cells. Journal of Experimental Medicine, 2000, 192, 325-336.	8.5	155
35	Biologic Functions and Signaling of the Interleukin-4 Receptor Complexes. Immunobiology, 2000, 201, 285-307.	1.9	41
36	Fibroblasts as Host Cells in Latent Leishmaniosis. Journal of Experimental Medicine, 2000, 191, 2121-2130.	8.5	193

#	Article	IF	CITATIONS
37	IFN-Î ³ inhibits the production of latent transforming growth factor-Î ² 1 by mouse inflammatory macrophages. European Journal of Immunology, 1998, 28, 1181-1188.	2.9	15
38	Type 1 Interferon (IFNα/β) and Type 2 Nitric Oxide Synthase Regulate the Innate Immune Response to a Protozoan Parasite. Immunity, 1998, 8, 77-87.	14.3	354
39	The immune response to Leishmania: mechanisms of parasite control and evasion. International Journal for Parasitology, 1998, 28, 121-134.	3.1	246
40	The Th1/Th2 Paradigm and Experimental Murine Leishmaniasis. International Archives of Allergy and Immunology, 1998, 115, 191-202.	2.1	39
41	Derepressed Hyphal Growth and Reduced Virulence in a VH1 Family-related Protein Phosphatase Mutant of the Human PathogenCandida albicans. Molecular Biology of the Cell, 1997, 8, 2539-2551.	2.1	105
42	Interferon Regulatory Factor-1 Is Required for a T Helper 1 Immune Response In Vivo. Immunity, 1997, 6, 681-689.	14.3	265
43	In vivo blocking of l-selectin rescues BALB/c mice from fatal Leishmania major infection. Immunology Letters, 1997, 57, 89-91.	2.5	2
44	Expression and co-cytokine function of murine thioredoxin/adult T cell leukaemia-derived factor (ADF). Cytokine, 1996, 8, 6-13.	3.2	28
45	Dendritic cells inLeishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T cell immune response. European Journal of Immunology, 1995, 25, 693-699.	2.9	166
46	Early parasite containment is decisive for resistance toLeishmania major infection. European Journal of Immunology, 1995, 25, 2220-2227.	2.9	140
47	Lack of inducible nitric oxide synthase activity in T cell clones and T lymphocytes from naive andLeishmania major-infected mice. European Journal of Immunology, 1995, 25, 3229-3234.	2.9	22
48	l-N6-(1-Iminoethyl)-lysine potently inhibits inducible nitric oxide synthase and is superior to NG-monomethyl-arginine in vitro and in vivo. European Journal of Pharmacology, 1995, 294, 703-712.	3.5	76
49	Stable transfection of cloned murine T helper cells. Journal of Immunological Methods, 1995, 188, 139-146.	1.4	1
50	The Xid defect determines an improved clinical course of murine leishmaniasis in susceptible mice. International Immunology, 1994, 6, 1117-1124.	4.0	71
51	Vβ gene repertoires in T cells expanded in local self-healing and lethal systemic murine cutaneous leishmaniasis. European Journal of Immunology, 1994, 24, 492-495.	2.9	6
52	Leishmania major parasites share an epitope with the murine CD3-T cell receptor complex. European Journal of Immunology, 1994, 24, 503-507.	2.9	4
53	Langerhans cells transport <i>Leishmania major</i> from the infected skin to the draining lymph node for presentation to antigenâ€specific T cells. European Journal of Immunology, 1993, 23, 1595-1601.	2.9	256
54	Natural killer cells participate in the early defense against Leishmania major infection in mice. European Journal of Immunology, 1993, 23, 2237-2241.	2.9	99

#	Article	IF	CITATIONS
55	Signaling via CD28 costimulates lymphokine production, but does not reverse unresponsiveness to interleukin-2 in anti-CD3 triggered Th1 cells. European Journal of Immunology, 1993, 23, 2498-2502.	2.9	10
56	Cytokines in Leishmaniasis: A Complex Network of Stimulatory and Inhibitory Interactions. Immunobiology, 1993, 189, 356-396.	1.9	83
57	Differential Regulation of IL-9-Expression after Infection with Leishmania major in Susceptible and Resistant Mice. Immunobiology, 1993, 189, 419-435.	1.9	155
58	Parasitism of Epidermal Langerhans Cells in Experimental Cutaneous Leishmaniasis with <i>Leishmania major</i> . Journal of Infectious Diseases, 1993, 167, 418-425.	4.0	150
59	Two signals are involved in polyclonal B cell stimulation by T helper type 2 cells: a role for LFA-1 molecules and interleukin 4. European Journal of Immunology, 1992, 22, 599-602.	2.9	9
60	Murine epidermal Langerhans cells are potent stimulators of an antigen-specific T cell response toLeishmania major, the cause of cutaneous leishmaniasis. European Journal of Immunology, 1992, 22, 1341-1347.	2.9	50
61	Interferon-Î ³ Inhibits the Efficacy of Interleukin 1 to Generate a Th2-Cell Biased Immune Response Induced by Leishmania major. Immunobiology, 1991, 182, 292-306.	1.9	16
62	Cytokine interactions in experimental cutaneous leishmaniasis. Interleukin 4 synergizes with interferon-Î ³ to activate murine macrophages for killing ofLeishmania major amastigotes. European Journal of Immunology, 1991, 21, 327-333.	2.9	88
63	Cytokine interactions in experimental cutaneous leishmaniasis. II. Endogenous tumor necrosis factor-α production by macrophages is induced by the synergistic action of interferon (IFN)-γ and interleukin (IL) 4 and accounts for the antiparasitic effect mediated by IFN-γ and IL 4. European Journal of Immunology, 1991, 21, 1669-1675.	2.9	60
64	Different response of TH1 cells for stimulation with anti-CD3 antibodies. European Journal of Immunology, 1990, 20, 653-658.	2.9	22
65	Tumor necrosis factor-α in combination with interferon-γ, but not with interleukin 4 activates murine macrophages for elimination ofLeishmania major amastigotes. European Journal of Immunology, 1990, 20, 1131-1135.	2.9	185
66	Immunization of susceptible hosts with a soluble antigen fraction fromLeishmania major leads to aggravation of murine leishmaniasis mediated by CD4+ T cells. European Journal of Immunology, 1990, 20, 2533-2540.	2.9	28
67	Production of tumour necrosis factor during murine cutaneous leishmaniasis. Parasite Immunology, 1990, 12, 483-494.	1.5	27
68	Studies on the mechanism of polyclonal B cell stimulation by TH2 cells. European Journal of Immunology, 1989, 19, 77-81.	2.9	25
69	Suppressive effect of interferon-Î ³ on the BCL1 cell-dependent interleukin 5 bioassay. European Journal of Immunology, 1989, 19, 1327-1329.	2.9	9
70	Detection of cross-reacting epitopes on plasmid-encoded outer membrane proteins of enteropathogenic Yersinia by monoclonal antibodies. Medical Microbiology and Immunology, 1989, 178, 45-51.	4.8	8
71	Proteolysis of the Native Murine IL 1Î ² Precursor is Required to Generate IL 1Î ² Bioactivity. Immunobiology, 1989, 178, 436-448.	1.9	13
72	Coexistence of Antigen-Specific TH1 and TH2 Cells in Genetically Susceptible BALB/c Mice Infected with Leishmania major. Immunobiology, 1989, 179, 412-421.	1.9	38

#	Article	IF	CITATIONS
73	Studies on the release of cell-associated interleukin 1 by paraformaldehyde-treated murine macrophages. European Journal of Immunology, 1988, 18, 1609-1614.	2.9	16
74	Plasmids of Yersinia enterocolitica and Yersinia pseudotuberculosis: Analysis with restriction endonucleases. Zentralblatt Fur Bakteriologie, Mikrobiologie, Und Hygiene Series A, Medical Microbiology, Infectious Diseases, Virology, Parasitology, 1988, 268, 213-219.	0.5	4
75	Immunological characterization of yersinia enterocolitica O:9 and O:3 LPS antigens by monoclonal antibodies. Zentralblatt Fur Bakteriologie, Mikrobiologie, Und Hygiene Series A, Medical Microbiology, Infectious Diseases, Virology, Parasitology, 1988, 269, 298-313.	0.5	7
76	Quantitative representation of all T cells committed to develop into cytotoxic effector cells and/or interleukin 2 activity-producing helper cells within murine T lymphocyte subsets. European Journal of Immunology, 1984, 14, 33-39.	2.9	65
77	Frequency-Analysis of Precursors of Cytotoxic T Lymphocytes in Radiation Chimeras: Enumeration of Antigenspecific CTL-P Restricted to Thymic MHC- and Bone Marrow-MHC-Determinants. , 1984, , 51-60.		0
78	T-T cell interactions during cytotoxic T cell responses IV. Murine lymphoid dendritic cells are powerful stimulators for helper T lymphocytes. European Journal of Immunology, 1982, 12, 337-342.	2.9	41
79	6 Murine T cell subsets and interleukins: Relationships between cytotoxic T cells, helper T cells and accessory cells. Clinics in Haematology, 1982, 11, 607-630.	2.3	12
80	Cyclosporin A mediates immunosuppression of primary cytotoxic T cell responses by impairing the release of interleukin 1 and interleukin 2. European Journal of Immunology, 1981, 11, 657-661.	2.9	634
81	Impact of Thymus on the Generation of Immunocompetence and Diversity of Antigen-Specific MHC-Restricted Cytotoxic T-Lymphocyte Precursors. Immunological Reviews, 1981, 58, 95-129.	6.0	64
82	The Role of the Major Histocompatibility Gene Complex in Murine Cytotoxic T Cell Responses. Advances in Cancer Research, 1980, 31, 77-124.	5.0	21
83	Anti H-2Dd alloreactivity mediated by herpes-simplex-virus specific cytotoxic H-2k T lymphocytes is associated with H-2Dk. Immunogenetics, 1980, 10, 395-404.	2.4	15
84	Herpes-simplex-virus-specific, H-2Dk-restricted T lymphocytes bear receptors for H-2Dd alloantigen. Immunogenetics, 1980, 11-11, 169-176.	2.4	12
85	T cell-mediated cytotoxic immune responsiveness of chimeric mice bearing a thymus graft fully allogeneic to the graft of lymphoid stem cells. European Journal of Immunology, 1980, 10, 521-525.	2.9	29
86	T-T cell interactions duringin vitro cytotoxic T lymphocyte responses. III. Antigen-specific T helper cells release nonspecific mediator(s) able to help induction of H-2-restricted cytotoxic T lymphocyte responses across cell-impermeable membranes. European Journal of Immunology, 1980, 10, 577-582.	2.9	26
87	T-T Cell Interactions during Cytotoxic T Lymphocyte (CTL) Responses: T Cell Derived Helper Factor (Interleukin 2) as a Probe to Analyze CTL Responsiveness and Thymic Maturation of CTL Progenitors. Immunological Reviews, 1980, 51, 215-255.	6.0	224
88	T-cell-derived helper factor allows in vivo induction of cytotoxic T cells in nu/nu mice. Nature, 1980, 284, 278-280.	27.8	234
89	Influenza virus-specific T cell-mediated cytotoxicity: integration of the virus antigen into the target cell membrane is essential for target cell formation. European Journal of Immunology, 1979, 9, 107-111.	2.9	40
90	T-cell-derived helper factor allows Lyt 123 thymocytes to differentiate into cytotoxic T lymphocytes. Nature, 1979, 280, 405-406.	27.8	36

#	Article	IF	CITATIONS
91	Virion Antigens Introduced Exogeneously into the Cell Membrane Render Syngeneic Target Cells Susceptible for T Cell-Mediated Cytolysis. Zeitschrift Fur Immunitatsforschung Immunobiology, 1977, 153, 268-273.	0.3	2
92	Specificity of In Vivo Tumor Rejection Assessed by Mixing Immune Spleen Cells with Target and Unrelated Tumor Cells. Experimental Biology and Medicine, 1973, 144, 813-818.	2.4	51
93	Tumor Immunity to Murine Plasma Cell Tumors. I. Tumor-Associated Transplantation Antigens of NZB and BALB/c Plasma Cell Tumors 2 3. Journal of the National Cancer Institute, 1973, 50, 159-172.	6.3	52