Hidemi Misawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11085686/publications.pdf

Version: 2024-02-01

76326 76900 5,917 94 40 74 citations h-index g-index papers 95 95 95 7143 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Involvement of neuronal and muscular Trk-fused gene (TFG) defects in the development of neurodegenerative diseases. Scientific Reports, 2022, 12, 1966.	3.3	5
2	Stagnation of glymphatic interstitial fluid flow and delay in waste clearance in the SOD1-G93A mouse model of ALS. Neuroscience Research, 2021, 171, 74-82.	1.9	15
3	Competitive inhibition of the high-affinity choline transporter by tetrahydropyrimidine anthelmintics. European Journal of Pharmacology, 2021, 898, 173986.	3. 5	4
4	Regulation of Immune Functions by Non-Neuronal Acetylcholine (ACh) via Muscarinic and Nicotinic ACh Receptors. International Journal of Molecular Sciences, 2021, 22, 6818.	4.1	21
5	Oxidative misfolding of Cu/Zn-superoxide dismutase triggered by non-canonical intramolecular disulfide formation. Free Radical Biology and Medicine, 2020, 147, 187-199.	2.9	13
6	Endogenous neurotoxin-like protein Ly6H inhibits alpha7 nicotinic acetylcholine receptor currents at the plasma membrane. Scientific Reports, 2020, 10, 11996.	3 . 3	12
7	Behavioral and electrophysiological evidence for a neuroprotective role of aquaporin-4 in the 5xFAD transgenic mice model. Acta Neuropathologica Communications, 2020, 8, 67.	5. 2	27
8	Minireview: Divergent roles of $\hat{l}\pm7$ nicotinic acetylcholine receptors expressed on antigen-presenting cells and CD4+ T cells in the regulation of T cell differentiation. International Immunopharmacology, 2020, 82, 106306.	3.8	16
9	Distinct Roles of $\hat{l}\pm7$ nAChRs in Antigen-Presenting Cells and CD4+ T Cells in the Regulation of T Cell Differentiation. Frontiers in Immunology, 2019, 10, 1102.	4.8	34
10	α7 Nicotinic acetylcholine (ACh) receptors (α7 nAChRs) expressed on antigen-presenting cells (APCs) suppress the differentiation of CD4 ⁺ T cells Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-P-088.	0.0	0
11	Innate immune adaptor TRIF deficiency accelerates disease progression of ALS mice with accumulation of aberrantly activated astrocytes. Cell Death and Differentiation, 2018, 25, 2130-2146.	11.2	36
12	A copper-deficient form of mutant Cu/Zn-superoxide dismutase as an early pathological species in amyotrophic lateral sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2119-2130.	3.8	22
13	Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neuroscience Research, 2018, 133, 48-57.	1.9	22
14	Identification of mesothelioma-specific sialylated epitope recognized with monoclonal antibody SKM9-2 in a mucin-like membrane protein HEG1. Scientific Reports, 2018, 8, 14251.	3 . 3	15
15	SIMPLE binds specifically to PI4P through SIMPLE-like domain and participates in protein trafficking in the trans-Golgi network and/or recycling endosomes. PLoS ONE, 2018, 13, e0199829.	2.5	7
16	Roles for $\hat{l}\pm7$ nicotinic acetylcholine receptors on na \hat{A} -ve CD4 ⁺ T cells and antigen-presenting cells in regulation of differentiation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-3-25.	0.0	0
17	Selective elimination of slow motor neurons in mice progressively induces a kinetic tremor that resembles patients with essential tremor. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-82.	0.0	0
18	Immunochemical characterization on pathological oligomers of mutant Cu/Zn-superoxide dismutase in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2017, 12, 2.	10.8	16

#	Article	IF	CITATIONS
19	Physiological functions of the cholinergic system in immune cells. Journal of Pharmacological Sciences, 2017, 134, 1-21.	2.5	151
20	HEG1 is a novel mucin-like membrane protein that serves as a diagnostic and therapeutic target for malignant mesothelioma. Scientific Reports, 2017, 7, 45768.	3.3	50
21	A misfolded dimer of Cu/Znâ€superoxide dismutase leading to pathological oligomerization in amyotrophic lateral sclerosis. Protein Science, 2017, 26, 484-496.	7.6	28
22	Expression and Function of the Cholinergic System in Immune Cells. Frontiers in Immunology, 2017, 8, 1085.	4.8	250
23	Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging. PLoS ONE, 2017, 12, e0179375.	2.5	36
24	Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Scientific Reports, 2016, 6, 27354.	3.3	54
25	Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Scientific Reports, 2016, 6, 34575.	3.3	10
26	Reappraisal of VAChTâ€Cre: Preference in slow motor neurons innervating type I or IIa muscle fibers. Genesis, 2016, 54, 568-572.	1.6	3
27	Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons. Acta Neuropathologica Communications, 2016, 4, 15.	5 . 2	49
28	IL-22/STAT3-Induced Increases in SLURP1 Expression within Psoriatic Lesions Exerts Antimicrobial Effects against Staphylococcus aureus. PLoS ONE, 2015, 10, e0140750.	2.5	20
29	Non-neuronal cholinergic system in regulation of immune function with a focus on $\hat{l}\pm7$ nAChRs. International Immunopharmacology, 2015, 29, 127-134.	3.8	77
30	Transcriptional regulation of SLURP2, a psoriasis-associated gene, is under control of IL-22 in the skin: A special reference to the nested gene LYNX1. International Immunopharmacology, 2015, 29, 71-75.	3.8	15
31	SLURP-1, an endogenous $\hat{l}\pm7$ nicotinic acetylcholine receptor allosteric ligand, is expressed in CD205+ dendritic cells in human tonsils and potentiates lymphocytic cholinergic activity. Journal of Neuroimmunology, 2014, 267, 43-49.	2.3	34
32	Selective disruption of acetylcholine synthesis in subsets of motor neurons: A new model of late-onset motor neuron disease. Neurobiology of Disease, 2014, 65, 102-111.	4.4	8
33	The missing link between long-term stimulation of nicotinic receptors and the increases of acetylcholine release and vasodilation in the cerebral cortex of aged rats. Journal of Physiological Sciences, 2013, 63, 95-101.	2.1	5
34	Effect of secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) on airway epithelial cells. Biochemical and Biophysical Research Communications, 2013, 438, 175-179.	2.1	18
35	Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain, 2013, 136, 1371-1382.	7.6	168
36	Motor Neuron-specific Disruption of Proteasomes, but Not Autophagy, Replicates Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2012, 287, 42984-42994.	3.4	162

#	Article	IF	CITATIONS
37	Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sciences, 2012, 91, 1027-1032.	4.3	142
38	Klf4 Regulates the Expression of Slurp1, Which Functions as an Immunomodulatory Peptide in the Mouse Cornea., 2012, 53, 8433.		38
39	Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Annals of the New York Academy of Sciences, 2012, 1261, 7-17.	3.8	64
40	Osteopontin is an alpha motor neuron marker in the mouse spinal cord. Journal of Neuroscience Research, 2012, 90, 732-742.	2.9	26
41	Localization of Acetylcholine-Related Molecules in the Retina: Implication of the Communication from Photoreceptor to Retinal Pigment Epithelium. PLoS ONE, 2012, 7, e42841.	2.5	24
42	Sustained subcutaneous infusion of nicotine enhances cholinergic vasodilation in the cerebral cortex induced by stimulation of the nucleus basalis of Meynert in rats. European Journal of Pharmacology, 2011, 654, 235-240.	3.5	11
43	The in vivo contribution of motor neuron TrkB receptors to mutant SOD1 motor neuron disease. Human Molecular Genetics, 2011, 20, 4116-4131.	2.9	26
44	Substrate-Induced Internalization of the High-Affinity Choline Transporter. Journal of Neuroscience, 2011, 31, 14989-14997.	3.6	21
45	Induced Loss of ADAR2 Engenders Slow Death of Motor Neurons from Q/R Site-Unedited GluR2. Journal of Neuroscience, 2010, 30, 11917-11925.	3.6	137
46	miRNA malfunction causes spinal motor neuron disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13111-13116.	7.1	299
47	Down-regulation of secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1), an endogenous allosteric l±7 nicotinic acetylcholine receptor modulator, in murine and human asthmatic conditions. Biochemical and Biophysical Research Communications, 2010, 398, 713-718.	2.1	19
48	Expression of SLURPâ€1, an endogenous α7 nicotinic acetylcholine receptor allosteric ligand, in murine bronchial epithelial cells. Journal of Neuroscience Research, 2009, 87, 2740-2747.	2.9	41
49	Acetylcholine synthesis and release in NIH3T3 cells coexpressing the highâ€affinity choline transporter and choline acetyltransferase. Journal of Neuroscience Research, 2009, 87, 3024-3032.	2.9	15
50	Primary sensory neuronal expression of SLURP-1, an endogenous nicotinic acetylcholine receptor ligand. Neuroscience Research, 2009, 64, 403-412.	1.9	60
51	Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neuroscience, 2008, 11, 251-253.	14.8	1,015
52	Aberrant trafficking of the highâ€affinity choline transporter in APâ€3â€deficient mice. European Journal of Neuroscience, 2008, 27, 3109-3117.	2.6	10
53	Role of GluR1 in Activity-Dependent Motor System Development. Journal of Neuroscience, 2008, 28, 9953-9968.	3.6	26
54	Renal defects associated with improper polarization of the CRB and DLG polarity complexes in MALS-3 knockout mice. Journal of Cell Biology, 2007, 179, 151-164.	5.2	42

#	Article	IF	CITATIONS
55	Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sciences, 2007, 80, 2365-2368.	4.3	79
56	Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sciences, 2007, 80, 2206-2209.	4.3	89
57	Expression and function of genes encoding cholinergic components in murine immune cells. Life Sciences, 2007, 80, 2314-2319.	4.3	199
58	Diminished antigen-specific IgG1 and interleukin-6 production and acetylcholinesterase expression in combined M1 and M5 muscarinic acetylcholine receptor knockout mice. Journal of Neuroimmunology, 2007, 188, 80-85.	2.3	47
59	Enhanced serum antigen-specific lgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Journal of Neuroimmunology, 2007, 189, 69-74.	2.3	87
60	Conditional knockout of Mn superoxide dismutase in postnatal motor neurons reveals resistance to mitochondrial generated superoxide radicals. Neurobiology of Disease, 2006, 23, 169-177.	4.4	49
61	Novel analogs of choline as potential neuroprotective agents. Journal of Alzheimer's Disease, 2005, 6, S85-S92.	2.6	7
62	Neurotransmitter release regulated by a MALS–liprin-α presynaptic complex. Journal of Cell Biology, 2005, 170, 1127-1134.	5 . 2	116
63	Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Human Molecular Genetics, 2004, 13, 2183-2196.	2.9	138
64	Ultrastructural localization of high-affinity choline transporter in the rat neuromuscular junction: Enrichment on synaptic vesicles. Synapse, 2004, 53, 53-56.	1.2	58
65	The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO Journal, 2003, 22, 6665-6674.	7.8	96
66	Hyperproliferation of synapses on spinal motor neurons of Duchenne muscular dystrophy and myotonic dystrophy patients. Acta Neuropathologica, 2003, 106, 557-560.	7.7	6
67	VAChT-Cre.Fast and VAChT-Cre.Slow: Postnatal expression of Cre recombinase in somatomotor neurons with different onset. Genesis, 2003, 37, 44-50.	1.6	31
68	Identification of a Monogenic Locus (<i>jams1</i>) Causing Juvenile Audiogenic Seizures in Mice. Journal of Neuroscience, 2002, 22, 10088-10093.	3.6	28
69	Calcium-Independent Release of Acetylcholine from Stable Cell Lines Expressing Mouse Choline Acetyltransferase cDNA. Journal of Neurochemistry, 2002, 62, 465-470.	3.9	18
70	A Subtype of κ-Opioid Receptor Mediates Inhibition of High-Affinity GTPase Inherent in Gi1 in Guinea Pig Cerebellar Membranes. Journal of Neurochemistry, 2002, 66, 845-851.	3.9	9
71	Contrasting Localizations of MALS/LIN-7 PDZ Proteins in Brain and Molecular Compensation in Knockout Mice. Journal of Biological Chemistry, 2001, 276, 9264-9272.	3.4	46
72	A novel function of synapsin II in neurotransmitter release. Molecular Brain Research, 2000, 85, 133-143.	2.3	17

#	Article	IF	CITATIONS
73	Identification and Transgenic Analysis of a Murine Promoter that Targets Cholinergic Neuron Expression. Journal of Neurochemistry, 1999, 72, 17-28.	3.9	42
74	Constitutive expression of mRNA for the same choline acetyltransferase as that in the nervous system, an acetylcholine-synthesizing enzyme, in human leukemic T-cell lines. Neuroscience Letters, 1999, 259, 71-74.	2.1	58
75	Transfection Analysis of Functional Roles of Complexin I and II in the Exocytosis of Two Different Types of Secretory Vesicles. Biochemical and Biophysical Research Communications, 1999, 265, 691-696.	2.1	71
76	Induction of choline acetyltransferase mRNA in human mononuclear leukocytes stimulated by phytohemagglutinin, a T-cell activator. Journal of Neuroimmunology, 1998, 82, 101-107.	2.3	95
77	Loss of Cholinergic Synapses on the Spinal Motor Neurons of Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 1998, 57, 329-333.	1.7	73
78	Molecular characterization of the mouse vesicular acetylcholine transporter gene. NeuroReport, 1997, 8, 3467-3473.	1.2	46
79	Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. Journal of Chemical Neuroanatomy, 1997, 13, 23-39.	2.1	203
80	Human choline acetyltransferase mRNAs with different 5′-region produce a 69-kDa major translation product. Molecular Brain Research, 1997, 44, 323-333.	2.3	61
81	Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neuroscience Letters, 1997, 232, 53-56.	2.1	96
82	Changes of expression levels of choline acetyltransferase and vesicular acetylcholine transporter mRNAs after transection of the hypoglossal nerve in adult rats. Neuroscience Letters, 1997, 236, 95-98.	2.1	27
83	Coordinate expression of vesicular acetylcholine transporter and choline acetyltransferase in sympathetic superior cervical neurones. NeuroReport, 1995, 6, 965-968.	1.2	77
84	Expression of Choline Acetyltransferase mRNA and Protein in T-Lymphocytes Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1995, 71, 231-235.	3.8	41
85	A subtype of opioid \hat{I}^2 -receptor is coupled to inhibition of Gil-mediated phospholipase C activity in the guinea pig cerebellum. FEBS Letters, 1995, 361, 106-110.	2.8	18
86	Discrete acetylcholine release from neuroblastoma or hybrid cells overexpressing choline acetyltransferase into the neuromuscular synaptic cleft. Neuroscience Research, 1995, 22, 81-88.	1.9	14
87	cDNA cloning and chromosomal localization of the human ciliary neurotrophic factor gene. Neuroscience Letters, 1995, 185, 175-178.	2.1	0
88	A null mutation in the human CNTF gene is not causally related to neurological diseases. Nature Genetics, 1994, 7, 79-84.	21.4	202
89	Reply to "CNTF in the embryo― Nature Genetics, 1994, 7, 460-460.	21.4	0
90	Transcriptional Regulation of Choline Acetyltransferase Gene by Cyclic AMP. Journal of Neurochemistry, 1993, 60, 1383-1387.	3.9	48

HIDEMI MISAWA

#	Article	IF	CITATION
91	Multiple mRNA species of choline acetyltransferase from rat spinal cord. Molecular Brain Research, 1993, 18, 71-76.	2.3	86
92	Functional Reconstitution of Purified Giand Gowith ?-Opioid Receptors in Guinea Pig Striatal Membranes Pretreated with Micromolar Concentrations of N-Ethylmaleimide. Journal of Neurochemistry, 1990, 54, 841-848.	3.9	64
93	$\hat{\mathbb{P}}$ -Opioid agonist inhibits phospholipase C, possibly via an inhibition of G-protein activity. Neuroscience Letters, 1990, 112, 324-327.	2.1	30
94	The specific opioid κ-agonist U-50,488H inhibits low Km GTPase. European Journal of Pharmacology, 1987, 138, 129-132.	3.5	25