Jeffrey J Tabor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meeting Measurement Precision Requirements for Effective Engineering of Genetic Regulatory Networks. ACS Synthetic Biology, 2022, 11, 1196-1207.	3.8	8
2	Mucosal acidosis elicits a unique molecular signature in epithelia and intestinal tissue mediated by GPR31-induced CREB phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
3	Bacterial two-component systems as sensors for synthetic biology applications. Current Opinion in Systems Biology, 2021, 28, 100398.	2.6	27
4	Independent control of mean and noise by convolution of gene expression distributions. Nature Communications, 2021, 12, 6957.	12.8	3
5	Multiplexing cell ell communication. Molecular Systems Biology, 2020, 16, e9618.	7.2	39
6	Optogenetic control of gut bacterial metabolism to promote longevity. ELife, 2020, 9, .	6.0	43
7	Optogenetic control of Bacillus subtilis gene expression. Nature Communications, 2019, 10, 3099.	12.8	69
8	Communicating Structure and Function in Synthetic Biology Diagrams. ACS Synthetic Biology, 2019, 8, 1818-1825.	3.8	30
9	Production of Phytochromes by High-Cell-Density <i>E. coli</i> Fermentation. ACS Synthetic Biology, 2019, 8, 2442-2450.	3.8	17
10	An Engineered <i>B.Âsubtilis</i> Inducible Promoter System with over 10â€`000-Fold Dynamic Range. ACS Synthetic Biology, 2019, 8, 1673-1678.	3.8	35
11	DIY optogenetics: Building, programming, and using the Light Plate Apparatus. Methods in Enzymology, 2019, 624, 197-226.	1.0	1
12	Rewiring bacterial two-component systems by modular DNA-binding domain swapping. Nature Chemical Biology, 2019, 15, 690-698.	8.0	75
13	Phosphatase activity tunes two-component system sensor detection threshold. Nature Communications, 2018, 9, 1433.	12.8	66
14	A Miniaturized <i>Escherichia coli</i> Green Light Sensor with High Dynamic Range. ChemBioChem, 2018, 19, 1255-1258.	2.6	64
15	Engineering an <i>E. coli</i> Near-Infrared Light Sensor. ACS Synthetic Biology, 2018, 7, 240-248.	3.8	52
16	Reverse transduction can improve efficiency of AAV vectors in transductionâ€resistant cells. Biotechnology and Bioengineering, 2018, 115, 3042-3049.	3.3	5
17	A photoconversion model for full spectral programming and multiplexing of optogeneticÂsystems. Molecular Systems Biology, 2017, 13, 926.	7.2	31
18	Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 2017, 13, 923.	7.2	194

Jeffrey J Tabor

#	Article	IF	CITATIONS
19	Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiology Spectrum, 2017, 5, .	3.0	59
20	Repurposing <i>Synechocystis</i> PCC6803 UirS–UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in <i>E. coli</i> . ACS Synthetic Biology, 2016, 5, 733-740.	3.8	77
21	FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units. ACS Synthetic Biology, 2016, 5, 774-780.	3.8	108
22	Multiplexed Bacterial Cell-Cell Communication via a Genetically Encoded CRISPRi-Based Multiplexer-Demultiplexer Circuit. , 2016, , .		2
23	An open-hardware platform for optogenetics and photobiology. Scientific Reports, 2016, 6, 35363.	3.3	108
24	An Optogenetic Approach to Dynamically Study Membrane Confinement of Prestin. Biophysical Journal, 2016, 110, 138a.	0.5	0
25	Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery. ACS Nano, 2016, 10, 225-237.	14.6	45
26	How to train your microbe: methods for dynamically characterizing gene networks. Current Opinion in Microbiology, 2015, 24, 113-123.	5.1	27
27	Leveraging synthetic biology for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 015-022.	3.7	6
28	Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nature Methods, 2014, 11, 449-455.	19.0	179
29	Refactoring and Optimization of Light-Switchable <i>Escherichia coli</i> Two-Component Systems. ACS Synthetic Biology, 2014, 3, 820-831.	3.8	144
30	Optogenetic characterization methods overcome key challenges in synthetic and systems biology. Nature Chemical Biology, 2014, 10, 502-511.	8.0	66
31	Post-translational tools expand the scope of synthetic biology. Current Opinion in Chemical Biology, 2012, 16, 300-306.	6.1	43
32	Modular gene-circuit design takes two steps forward. Nature Methods, 2012, 9, 1061-1063.	19.0	6
33	Non-transcriptional regulatory processes shape transcriptional network dynamics. Nature Reviews Microbiology, 2011, 9, 817-828.	28.6	46
34	Multichromatic Control of Gene Expression in Escherichia coli. Journal of Molecular Biology, 2011, 405, 315-324.	4.2	225
35	Robust multicellular computing using genetically encoded NOR gates and chemical â€~wires'. Nature, 2011, 469, 212-215.	27.8	781
36	Plate-Based Assays for Light-Regulated Gene Expression Systems. Methods in Enzymology, 2011, 497, 373-391.	1.0	3

Jeffrey J Tabor

#	Article	IF	CITATIONS
37	A Synthetic Genetic Edge Detection Program. Cell, 2009, 137, 1272-1281.	28.9	442
38	Performance Characteristics for Sensors and Circuits Used to Program E. coli. , 2009, , 401-439.		8
39	Engineering stochasticity in gene expression. Molecular BioSystems, 2008, 4, 754.	2.9	27
40	Programming living cells to function as massively parallel computers. Proceedings - Design Automation Conference, 2007, , .	0.0	3
41	Taking pictures with E. coli: signal processing using synthetic biology. IEEE Signal Processing Magazine, 2006, 23, 144-142.	5.6	1
42	Deoxyribozymes that recode sequence information. Nucleic Acids Research, 2006, 34, 2166-2172.	14.5	18
43	Developing RNA Tools for Engineered Regulatory Systems. Biotechnology and Genetic Engineering Reviews, 2006, 22, 21-44.	6.2	1
44	Engineering Escherichia coli to see light. Nature, 2005, 438, 441-442.	27.8	565
45	Playing to win at DNA computation. Nature Biotechnology, 2003, 21, 1013-1015.	17.5	16
46	Engineering Diagnostic and Therapeutic Gut Bacteria. , 0, , 331-361.		4