Daniel J Cua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11082145/publications.pdf Version: 2024-02-01

DANIEL I CHA

#	Article	IF	CITATIONS
1	The Orphan Nuclear Receptor RORÎ ³ t Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell, 2006, 126, 1121-1133.	28.9	4,470
2	IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine, 2005, 201, 233-240.	8.5	3,550
3	Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003, 421, 744-748.	27.8	2,602
4	Development, cytokine profile and function of human interleukin 17–producing helper T cells. Nature Immunology, 2007, 8, 950-957.	14.5	1,795
5	Divergent Pro- and Antiinflammatory Roles for IL-23 and IL-12 in Joint Autoimmune Inflammation. Journal of Experimental Medicine, 2003, 198, 1951-1957.	8.5	1,523
6	IL-23 is essential for T cell–mediated colitis and promotes inflammation via IL-17 and IL-6. Journal of Clinical Investigation, 2006, 116, 1310-1316.	8.2	1,376
7	TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nature Immunology, 2007, 8, 1390-1397.	14.5	1,353
8	Innate IL-17-producing cells: the sentinels of the immune system. Nature Reviews Immunology, 2010, 10, 479-489.	22.7	1,344
9	Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. Journal of Experimental Medicine, 2006, 203, 2673-2682.	8.5	1,320
10	The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nature Reviews Immunology, 2014, 14, 585-600.	22.7	1,267
11	Generation of pathogenic TH17 cells in the absence of TGF-Î ² signalling. Nature, 2010, 467, 967-971.	27.8	1,253
12	In Vitro Generation of Interleukin 10–producing Regulatory CD4+ T Cells Is Induced by Immunosuppressive Drugs and Inhibited by T Helper Type 1 (Th1)– and Th2-inducing Cytokines. Journal of Experimental Medicine, 2002, 195, 603-616.	8.5	1,069
13	Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunology, 2011, 12, 255-263.	14.5	1,031
14	The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nature Immunology, 2009, 10, 314-324.	14.5	921
15	IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4â^'CD8â^' entheseal resident T cells. Nature Medicine, 2012, 18, 1069-1076.	30.7	921
16	The IL-17 Family of Cytokines in Health and Disease. Immunity, 2019, 50, 892-906.	14.3	773
17	Interleukin-23 drives innate and T cell–mediated intestinal inflammation. Journal of Experimental Medicine, 2006, 203, 2473-2483	8.5	760
18	Pivotal role of cerebral interleukin-17–producing γÎ⊤ cells in the delayed phase of ischemic brain injury. Nature Medicine, 2009, 15, 946-950.	30.7	754

#	Article	IF	CITATIONS
19	Interleukin-17-Producing $\hat{I}^{\hat{J}\hat{I}'}T$ Cells Selectively Expand in Response to Pathogen Products and Environmental Signals. Immunity, 2009, 31, 321-330.	14.3	753
20	Discovery and Biology of IL-23 and IL-27: Related but Functionally Distinct Regulators of Inflammation. Annual Review of Immunology, 2007, 25, 221-242.	21.8	698
21	IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nature Medicine, 2015, 21, 719-729.	30.7	658
22	Understanding the IL-23–IL-17 immune pathway. Trends in Immunology, 2006, 27, 17-23.	6.8	655
23	ILâ€12 and ILâ€23: master regulators of innate and adaptive immunity. Immunological Reviews, 2004, 202, 96-105.	6.0	653
24	Differential Activity of IL-12 and IL-23 in Mucosal and Systemic Innate Immune Pathology. Immunity, 2006, 25, 309-318.	14.3	615
25	Th17 Cell Differentiation: The Long and Winding Road. Immunity, 2008, 28, 445-453.	14.3	599
26	Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity, 2015, 43, 727-738.	14.3	577
27	IL-23 plays a key role in <i>Helicobacter hepaticus</i> –induced T cell–dependent colitis. Journal of Experimental Medicine, 2006, 203, 2485-2494.	8.5	571
28	Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. Journal of Clinical Investigation, 2006, 116, 1317-1326.	8.2	519
29	Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. Journal of Experimental Medicine, 2009, 206, 535-548.	8.5	426
30	IL-25 regulates Th17 function in autoimmune inflammation. Journal of Experimental Medicine, 2007, 204, 161-170.	8.5	362
31	Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. Journal of Experimental Medicine, 2006, 203, 843-849.	8.5	346
32	MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science, 2019, 366, .	12.6	342
33	IL-17 Regulates Adipogenesis, Glucose Homeostasis, and Obesity. Journal of Immunology, 2010, 185, 6947-6959.	0.8	309
34	IL-27 Blocks RORc Expression to Inhibit Lineage Commitment of Th17 Cells. Journal of Immunology, 2009, 182, 5748-5756.	0.8	302
35	Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine. Journal of Experimental Medicine, 2008, 205, 2191-2198.	8.5	255
36	Transgenic Interleukin 10 Prevents Induction of Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 1999, 189, 1005-1010.	8.5	206

#	Article	IF	CITATIONS
37	The role of interleukin-10 in autoimmune disease: systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Cytokine and Growth Factor Reviews, 2002, 13, 403-412.	7.2	183
38	Th17 cell development: from the cradle to the grave. Immunological Reviews, 2013, 252, 78-88.	6.0	180
39	Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology, 2009, 48, 347-354.	1.9	173
40	The Receptor SIGIRR Suppresses Th17 Cell Proliferation via Inhibition of the Interleukin-1 Receptor Pathway and mTOR Kinase Activation. Immunity, 2010, 32, 54-66.	14.3	171
41	A role for IL-27p28 as an antagonist of gp130-mediated signaling. Nature Immunology, 2010, 11, 1119-1126.	14.5	168
42	Central Nervous System Expression of IL-10 Inhibits Autoimmune Encephalomyelitis. Journal of Immunology, 2001, 166, 602-608.	0.8	162
43	IL-23 Provides a Limited Mechanism of Resistance to Acute Toxoplasmosis in the Absence of IL-12. Journal of Immunology, 2004, 173, 1887-1893.	0.8	149
44	LAG3+ Regulatory T Cells Restrain Interleukin-23-Producing CX3CR1+ Gut-Resident Macrophages during Group 3 Innate Lymphoid Cell-Driven Colitis. Immunity, 2018, 49, 342-352.e5.	14.3	137
45	The link between IL-23 and Th17 cell-mediated immune pathologies. Seminars in Immunology, 2007, 19, 372-376.	5.6	131
46	Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Pathogenicity of T Helper 17 Cells. Immunity, 2016, 44, 131-142.	14.3	131
47	Foxp3+ Regulatory T Cells Promote T Helper 17 Cell Development InÂVivo through Regulation of Interleukin-2. Immunity, 2011, 34, 409-421.	14.3	128
48	Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy. Cancer Research, 2017, 77, 1108-1118.	0.9	99
49	IL-23 Is Required for the Development of Severe Egg-Induced Immunopathology in Schistosomiasis and for Lesional Expression of IL-17. Journal of Immunology, 2008, 180, 2486-2495.	0.8	93
50	Epithelial Cell-Derived IL-25, but Not Th17 Cell-Derived IL-17 or IL-17F, Is Crucial for Murine Asthma. Journal of Immunology, 2012, 189, 3641-3652.	0.8	93
51	Cytokines that regulate autoimmunity. Current Opinion in Immunology, 2008, 20, 663-668.	5.5	82
52	IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nature Communications, 2015, 6, 6525.	12.8	81
53	Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. Journal of Experimental Medicine, 2010, 207, 579-589.	8.5	80
54	Kinetics of Cytokine mRNA Expression in the Central Nervous System Following Lethal and Nonlethal Coronavirus-Induced Acute Encephalomyelitis. Virology, 1997, 233, 260-270.	2.4	79

#	Article	IF	CITATIONS
55	TGF-β, a 'double agent' in the immune pathology war. Nature Immunology, 2006, 7, 557-559.	14.5	79
56	Autoimmune Memory T Helper 17 Cell Function and Expansion Are Dependent on Interleukin-23. Cell Reports, 2013, 3, 1378-1388.	6.4	72
57	Macrophages regulate induction of delayedâ€ŧype hypersensitivity and experimental allergic encephalomyelitis in SJL mice. European Journal of Immunology, 1995, 25, 2318-2324.	2.9	59
58	The critical role of interleukin-23 in spondyloarthropathy. Molecular Immunology, 2014, 57, 38-43.	2.2	58
59	Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. Journal of Clinical Investigation, 2011, 121, 4446-4461.	8.2	53
60	Inhibition of RORÎ ³ T Skews TCRα Gene Rearrangement and Limits T Cell Repertoire Diversity. Cell Reports, 2016, 17, 3206-3218.	6.4	51
61	Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Current Opinion in Infectious Diseases, 2006, 19, 245-252.	3.1	49
62	Interleukin-12 (IL-12), but Not IL-23, Deficiency Ameliorates Viral Encephalitis without Affecting Viral Control. Journal of Virology, 2009, 83, 5978-5986.	3.4	44
63	Autoimmunity's collateral damage: Gut microbiota strikes 'back'. Nature Medicine, 2011, 17, 1055-1056.	30.7	40
64	GITR Agonism Enhances Cellular Metabolism to Support CD8+ T-cell Proliferation and Effector Cytokine Production in a Mouse Tumor Model. Cancer Immunology Research, 2018, 6, 1199-1211.	3.4	39
65	Reconciling id, ego, and superego within interleukinâ€⊋3. Immunological Reviews, 2008, 226, 103-111.	6.0	37
66	Regulation of the development of acute hepatitis by ILâ€23 through ILâ€22 and ILâ€17 production. European Journal of Immunology, 2011, 41, 2828-2839.	2.9	36
67	T Cells Doing It for Themselves: TGF- \hat{l}^2 Regulation of Th1 and Th17 Cells. Immunity, 2007, 26, 547-549.	14.3	32
68	Essential roles of IL-12 and dendritic cells but not IL-23 and macrophages in lupus-like diseases initiated by cell surface HSP gp96. European Journal of Immunology, 2007, 37, 706-715.	2.9	30
69	A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease. Journal of Clinical Investigation, 2016, 126, 3541-3555.	8.2	30
70	NK Cells Regulate CD4 Responses Prior to Antigen Encounter. Journal of Immunology, 2003, 171, 234-239.	0.8	29
71	<pre><scp>IL</scp>â€17Aâ€producing <scp>CD</scp>30⁺ Vδ1 T cells drive inflammationâ€induced canc progression. Cancer Science, 2016, 107, 1206-1214.</pre>	er 3.9	28
72	Cutting Edge: CLEC5A Mediates Macrophage Function and Chronic Obstructive Pulmonary Disease Pathologies. Journal of Immunology, 2016, 196, 3227-3231.	0.8	27

#	Article	IF	CITATIONS
73	SnapShot: Cytokines II. Cell, 2008, 132, 500.e1-500.e2.	28.9	26
74	IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 697-707.	2.9	26
75	The Emerging Landscape of RORÎ ³ t Biology. Immunity, 2014, 40, 451-452.	14.3	24
76	Spondyloarthropathy: interleukin 23 and disease modification. Lancet, The, 2015, 385, 2017-2018.	13.7	21
77	IFN-γ protects from lethal IL-17 mediated viral encephalomyelitis independent of neutrophils. Journal of Neuroinflammation, 2012, 9, 104.	7.2	20
78	IL-23 promotes TCR-mediated negative selection of thymocytes through the upregulation of IL-23 receptor and RORÎ ³ t. Nature Communications, 2014, 5, 4259.	12.8	19
79	The Myeloid Receptor PILRÎ ² Mediates the Balance of Inflammatory Responses through Regulation of IL-27 Production. PLoS ONE, 2012, 7, e31680.	2.5	18
80	Melatonin Lulling Th17 Cells to Sleep. Cell, 2015, 162, 1212-1214.	28.9	17
81	Interleukin-23: a promising therapeutic target in seronegative spondyloarthropathy. Current Opinion in Pharmacology, 2013, 13, 445-448.	3.5	11
82	Experimental Lung Metastases in Mice Are More Effectively Inhibited by Blockade of IL23R than IL23. Cancer Immunology Research, 2018, 6, 978-987.	3.4	10
83	OUP accepted manuscript. Rheumatology, 2021, 60, iv1-iv3.	1.9	7
84	IL-26 AMPs up the TH17 arsenal. Nature Immunology, 2015, 16, 897-898.	14.5	6
85	IL-23 p19 Knockout Mice Exhibit Minimal Defects in Responses to Primary and Secondary Infection with Francisella tularensis LVS. PLoS ONE, 2014, 9, e109898.	2.5	4
86	<scp>IL</scp> â€23 promotes the development of castrationâ€resistant prostate cancer. Immunology and Cell Biology, 2018, 96, 883-885.	2.3	4
87	Induction and Analysis of Anti-CD40-induced Colitis in Mice. Bio-protocol, 2019, 9, e3153.	0.4	4
88	Role of IL-23 in mobilization of immunoregulatory nitric oxide- or superoxide-producing Gr-1+ cells from bone marrow. Free Radical Biology and Medicine, 2009, 47, 357-363.	2.9	2
89	Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. Journal of Cell Biology, 2009, 184, i16-i16.	5.2	1
90	IL-23 in Health and Disease. , 2014, , 179-198.		1

#	Article	IF	CITATIONS
91	Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. Journal of Cell Biology, 2006, 175, i8-i8.	5.2	0