
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11478-11482.	7.1	1,045
2	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	28.9	420
3	Massively parallel de novo protein design for targeted therapeutics. Nature, 2017, 550, 74-79.	27.8	354
4	Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine, 2000, 19, 764-778.	3.8	329
5	Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine, 1995, 13, 1427-1430.	3.8	274
6	Induction of AIDS Virus-Specific CTL Activity in Fresh, Unstimulated Peripheral Blood Lymphocytes from Rhesus Macaques Vaccinated with a DNA Prime/Modified Vaccinia Virus Ankara Boost Regimen. Journal of Immunology, 2000, 164, 4968-4978.	0.8	247
7	Examination of Parameters Affecting the Elicitation of Humoral Immune Responses by Particle Bombardment-Mediated Genetic Immunization. DNA and Cell Biology, 1993, 12, 791-797.	1.9	199
8	Immunization of Rhesus Macaques with a DNA Prime/Modified Vaccinia Virus Ankara Boost Regimen Induces Broad Simian Immunodeficiency Virus (SIV)-Specific T-Cell Responses and Reduces Initial Viral Replication but Does Not Prevent Disease Progression following Challenge with Pathogenic SIVmac239. Journal of Virology, 2002, 76, 7187-7202.	3.4	185
9	An <i>Alphavirus</i> -derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Science Translational Medicine, 2020, 12, .	12.4	181
10	De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science, 2020, 370, 1208-1214.	12.6	172
11	DNA Vaccines Expressing either the GP or NP Genes of Ebola Virus Protect Mice from Lethal Challenge. Virology, 1998, 246, 134-144.	2.4	166
12	Use of DNAs Expressing HIV-1 Env and Noninfectious HIV-1 Particles to Raise Antibody Responses in Mice. Virology, 1995, 209, 147-154.	2.4	157
13	A Qualitative Progression in HIV Type 1 Glycoprotein 120-Specific Cytotoxic Cellular and Humoral Immune Responses in Mice Receiving a DNA-Based Glycoprotein 120 Vaccine. AIDS Research and Human Retroviruses, 1994, 10, 1433-1441.	1.1	142
14	Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods, 2006, 40, 86-97.	3.8	138
15	Vaccination with HIV-1 gp120 DNA induces immune responses that are boosted by a recombinant gp120 protein subunit. Vaccine, 1997, 15, 869-873.	3.8	133
16	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	28.9	131
17	Induction of Mucosal Protection against Primary, Heterologous Simian Immunodeficiency Virus by a DNA Vaccine. Journal of Virology, 2002, 76, 3309-3317.	3.4	110
18	Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nature Biotechnology, 2017, 35, 667-671.	17.5	108

#	Article	IF	CITATIONS
19	Multispecific Vaccine-Induced Mucosal Cytotoxic TLymphocytes Reduce Acute-Phase Viral Replication but Fail inLong-Term Control of Simian Immunodeficiency VirusSIVmac239. Journal of Virology, 2003, 77, 13348-13360.	3.4	101
20	Enhancement of immunodeficiency virus-specific immune responses in DNA-immunized rhesus macaques. Vaccine, 1997, 15, 924-926.	3.8	90
21	DNA vaccines: A novel approach to immunization. International Journal of Immunopharmacology, 1995, 17, 79-83.	1.1	85
22	Plasmid Vectors Encoding Cholera Toxin or the Heat-Labile Enterotoxin from Escherichia coli Are Strong Adjuvants for DNA Vaccines. Journal of Virology, 2002, 76, 4536-4546.	3.4	82
23	Amplifying RNA Vaccine Development. New England Journal of Medicine, 2020, 382, 2469-2471.	27.0	81
24	GM-CSF Increases Mucosal and Systemic Immunogenicity of an H1N1 Influenza DNA Vaccine Administered into the Epidermis of Non-Human Primates. PLoS ONE, 2010, 5, e11021.	2.5	73
25	Gene gun-based nucleic acid immunization alone or in combination with recombinant vaccinia vectors suppresses virus burden in rhesus macaques challenged with a heterologous SIV. Immunology and Cell Biology, 1997, 75, 389-396.	2.3	69
26	Clinical safety and efficacy of a powdered Hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. Vaccine, 2005, 23, 4867-4878.	3.8	69
27	Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. Comparative Immunology, Microbiology and Infectious Diseases, 2003, 26, 373-388.	1.6	67
28	Comparison of Immunity Generated by Nucleic Acid-, MF59-, and ISCOM-Formulated Human Immunodeficiency Virus Type 1 Vaccines in Rhesus Macaques: Evidence for Viral Clearance. Journal of Virology, 1999, 73, 3292-3300.	3.4	58
29	Induction of immunodeficiency virusâ€specific immune responses in rhesus monkeys following gene gunâ€mediated DNA vaccination. Journal of Medical Primatology, 1996, 25, 236-241.	0.6	57
30	Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens. Journal of Immunology, 2016, 196, 3064-3078.	0.8	56
31	HIV-1 vaccine-induced immune responses which correlate with protection from SHIV infection: compiled preclinical efficacy data from trials with ten different HIV-1 vaccine candidates. Immunology Letters, 1999, 66, 189-195.	2.5	49
32	A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathogens, 2016, 12, e1005409.	4.7	49
33	A novel tetrameric gp3501–470 as a potential Epstein–Barr virus vaccine. Vaccine, 2013, 31, 3039-3045.	3.8	46
34	Therapeutic DNA Vaccine Induces Broad T Cell Responses in the Gut and Sustained Protection from Viral Rebound and AIDS in SIV-Infected Rhesus Macaques. PLoS ONE, 2012, 7, e33715.	2.5	44
35	Prospects for developing an effective particle-mediated DNA vaccine against influenza. Expert Review of Vaccines, 2009, 8, 1205-1220.	4.4	42
36	Differences Between T Cell Epitopes Recognized After Immunization and After Infection. Journal of Immunology, 2002, 169, 4511-4521.	0.8	38

#	Article	IF	CITATIONS
37	Early cellular innate immune responses drive Zika viral persistence and tissue tropism in pigtail macaques. Nature Communications, 2018, 9, 3371.	12.8	38
38	Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Reports, 2019, 28, 877-895.e6.	6.4	36
39	DNA immunization in combination with effective antiretroviral drug therapy controls viral rebound and prevents simian AIDS after treatment is discontinued. Virology, 2006, 348, 200-215.	2.4	31
40	Induction and characterization of humoral and cellular immune responses elicited via gene gun-mediated nucleic acid immunization. Advanced Drug Delivery Reviews, 1996, 21, 3-18.	13.7	29
41	Simian-Human Immunodeficiency Virus SHIV.CH505 Infection of Rhesus Macaques Results in Persistent Viral Replication and Induces Intestinal Immunopathology. Journal of Virology, 2019, 93, .	3.4	27
42	Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates. Vaccine, 2016, 34, 3500-3507.	3.8	26
43	SARS-CoV2 variant-specific replicating RNA vaccines protect from disease following challenge with heterologous variants of concern. ELife, 2022, 11, .	6.0	26
44	Therapeutic conserved elements (CE) DNA vaccine induces strong T-cell responses against highly conserved viral sequences during simian-human immunodeficiency virus infection. Human Vaccines and Immunotherapeutics, 2018, 14, 1820-1831.	3.3	25
45	Immune Responses to Hepatitis B Virus Surface and Core Antigens in Mice, Monkeys, and Pigs after Accell® Particle-Mediated DNA Immunization. Annals of the New York Academy of Sciences, 1995, 772, 282-284.	3.8	24
46	Kinetics of Myeloid-Derived Suppressor Cell Frequency and Function during Simian Immunodeficiency Virus Infection, Combination Antiretroviral Therapy, and Treatment Interruption. Journal of Immunology, 2017, 198, 757-766.	0.8	23
47	Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates. PLoS ONE, 2017, 12, e0189780.	2.5	23
48	Immunogenicity of hybrid DNA vaccines expressing hepatitis B core particles carrying human and simian immunodeficiency virus epitopes in mice and rhesus macaques. Virology, 2007, 364, 245-255.	2.4	18
49	Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation. PLoS ONE, 2018, 13, e0198154.	2.5	18
50	Particle-mediated DNA vaccination of mice, monkeys and men: looking beyond the dogma. Current Opinion in Molecular Therapeutics, 2002, 4, 459-66.	2.8	17
51	Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathogens, 2020, 16, e1008377.	4.7	14
52	Optimizing Particle-Mediated Epidermal Delivery of an Influenza DNA Vaccine in Ferrets. , 2013, 940, 223-237.		12
53	Mucosal T Helper 17 and T Regulatory Cell Homeostasis Correlate with Acute Simian Immunodeficiency Virus Viremia and Responsiveness to Antiretroviral Therapy in Macaques. AIDS Research and Human Retroviruses, 2019, 35, 295-305.	1.1	10
54	Transient Immune Activation in BCG-Vaccinated Infant Rhesus Macaques Is Not Sufficient to Influence Oral Simian Immunodeficiency Virus Infection. Journal of Infectious Diseases, 2020, 222, 44-53.	4.0	10

#	Article	IF	CITATIONS
55	Laparoscopic Technique for Serial Collection of Para-Colonic, Left Colic, and Inferior Mesenteric Lymph Nodes in Macaques. PLoS ONE, 2016, 11, e0157535.	2.5	10
56	Rapid Induction of Multifunctional Antibodies in Rabbits and Macaques by Clade C HIV-1 CAP257 Envelopes Circulating During Epitope-Specific Neutralization Breadth Development. Frontiers in Immunology, 2020, 11, 984.	4.8	9
57	Effects of therapeutic vaccination on the control of SIV in rhesus macaques with variable responsiveness to antiretroviral drugs. PLoS ONE, 2021, 16, e0253265.	2.5	9
58	Preparing for Pandemics: RNA Vaccines at the Forefront. Molecular Therapy, 2020, 28, 1559-1560.	8.2	8
59	Functional characterization of ferret CCL20 and CCR6 and identification of chemotactic inhibitors. Cytokine, 2013, 61, 924-932.	3.2	7
60	Development of a Minor Histocompatibility Antigen Vaccine Regimen in the Canine Model of Hematopoietic Cell Transplantation. Transplantation, 2015, 99, 2083-2094.	1.0	7
61	Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. Npj Vaccines, 2021, 6, 34.	6.0	7
62	Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens. PLoS ONE, 2016, 11, e0153449.	2.5	7
63	DNA/Ad5 vaccination with SIV epitopes induced epitope-specific CD4+ T cells, but few subdominant epitope-specific CD8+ T cells. Vaccine, 2011, 29, 7483-7490.	3.8	6
64	Isolation, characterization, and functional analysis of ferret lymphatic endothelial cells. Veterinary Immunology and Immunopathology, 2015, 163, 134-145.	1.2	6
65	An HIV Vaccine Targeting the V2 Region of the HIV Envelope Induces a Highly Durable Polyfunctional Fc-Mediated Antibody Response in Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	6
66	B cell activating factor (BAFF) from neutrophils and dendritic cells is required for protective B cell responses against Salmonella typhimurium infection. PLoS ONE, 2021, 16, e0259158.	2.5	6
67	Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathogens, 2022, 18, e1010155.	4.7	6
68	Effects of monotherapy with (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) on the evolution of a primary Simian immunodeficiency virus (SIV) isolate. Virology, 2006, 354, 116-131.	2.4	5
69	<i>In Vivo</i> Hematopoietic Stem Cell Gene Therapy for SARS-CoV2 Infection Using a Decoy Receptor. Human Gene Therapy, 2022, 33, 389-403.	2.7	5
70	Modified Adenovirus Prime-Protein Boost Clade C HIV Vaccine Strategy Results in Reduced Viral DNA in Blood and Tissues Following Tier 2 SHIV Challenge. Frontiers in Immunology, 2020, 11, 626464.	4.8	4
71	Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques. PLoS Pathogens, 2021, 17, e1009575.	4.7	4
72	A Single Dose SARS-CoV-2 Replicon RNA Vaccine Induces Cellular and Humoral Immune Responses in Simian Immunodeficiency Virus Infected and Uninfected Pigtail Macaques. Frontiers in Immunology, 2021, 12, 800723.	4.8	4

#	Article	IF	CITATIONS
73	â€~Omics Investigations of HIV and SIV Pathogenesis and Innate Immunity. Current Topics in Microbiology and Immunology, 2012, 363, 87-116.	1.1	3
74	Commentary: HIV Vaccine Trial Exploits a Dual and Central Role for Innate Immunity. Journal of Virology, 2014, 88, 11640-11643.	3.4	3
75	STING Is Required in Conventional Dendritic Cells for DNA Vaccine Induction of Type I T Helper Cell- Dependent Antibody Responses. Frontiers in Immunology, 2022, 13, 861710.	4.8	3
76	Recrudescence of Natural Coccidioidomycosis During Combination Antiretroviral Therapy in a Pigtail Macaque Experimentally Infected with Simian Immunodeficiency Virus. AIDS Research and Human Retroviruses, 2021, 37, 505-509.	1.1	2
77	Oral Immunization with a Live Coxsackievirus/HIV Recombinant Induces Gag p24-Specific T Cell Responses. PLoS ONE, 2010, 5, e12499.	2.5	2
78	Particle-mediated DNA vaccines against seasonal and pandemic influenza viruses elicit strong mucosal antibody and T cell responses in the lung. Procedia in Vaccinology, 2010, 3, 2-11.	0.4	1
79	Rapid Loss of Th17 Cells after SIV Infection May Underlie Mucosal Dysfunction. AIDS Research and Human Retroviruses, 2014, 30, A48-A48.	1.1	0
80	Minor Antigen Vaccine-Sensitized DLI. Transplantation Direct, 2016, 2, e71.	1.6	0
81	A Gut Reaction to SIV and SHIV Infection: Lower Dysregulation of Mucosal T Cells during Acute Infection Is Associated with Greater Viral Suppression during cART. Viruses, 2021, 13, 1609.	3.3	0
82	Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. SSRN Electronic Journal, 0, , .	0.4	0
83	<i>Letter to the Editor:</i> Prior Infection with Coccidioidomycosis in Nonhuman Primates and Impact on Simian Immunodeficiency Virus Disease and Vaccine Immunogenicity. AIDS Research and Human Retroviruses, 2022, , .	1.1	0