
Gareth Pryce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11080481/publications.pdf Version: 2024-02-01

CADETH DOVCE

#	Article	IF	CITATIONS
1	Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature, 2000, 404, 84-87.	27.8	522
2	Endocannabinoids control spasticity in a multiple sclerosis model. FASEB Journal, 2001, 15, 300-302.	0.5	371
3	Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain, 2003, 126, 2191-2202.	7.6	330
4	Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nature Medicine, 2007, 13, 492-497.	30.7	326
5	In silico patent searching reveals a new cannabinoid receptor. Trends in Pharmacological Sciences, 2006, 27, 1-4.	8.7	302
6	The therapeutic potential of cannabis. Lancet Neurology, The, 2003, 2, 291-298.	10.2	299
7	Memory B Cells are Major Targets for Effective Immunotherapy in Relapsing Multiple Sclerosis. EBioMedicine, 2017, 16, 41-50.	6.1	225
8	MicroRNAâ€155 negatively affects blood–brain barrier function during neuroinflammation. FASEB Journal, 2014, 28, 2551-2565.	0.5	220
9	Lovastatin inhibits brain endothelial cell Rhoâ€mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB Journal, 2003, 17, 1-16.	0.5	201
10	Increasing cannabinoid levels by pharmacological and genetic manipulation delays disease progression in SOD1 mice. FASEB Journal, 2006, 20, 1003-1005.	0.5	142
11	Lymphocyte migration into brain modelled in vitro: Control by lymphocyte activation, cytokines, and antigen. Cellular Immunology, 1990, 127, 1-11.	3.0	123
12	Inhibition of Rho GTPases with Protein Prenyltransferase Inhibitors Prevents Leukocyte Recruitment to the Central Nervous System and Attenuates Clinical Signs of Disease in an Animal Model of Multiple Sclerosis. Journal of Immunology, 2002, 168, 4087-4094.	0.8	105
13	In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. European Journal of Pharmacology, 2004, 484, 249-257.	3.5	92
14	Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Journal of Neuroimmunology, 2008, 193, 120-129.	2.3	91
15	Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB1/CB2 receptors. European Journal of Pharmacology, 2002, 439, 83-92.	3.5	80
16	The ocrelizumab phase II extension trial suggests the potential to improve the risk: Benefit balance in multiple sclerosis Multiple Sclerosis and Related Disorders, 2020, 44, 102279.	2.0	77
17	Brain Endothelial miR-146a Negatively Modulates T-Cell Adhesion through Repressing Multiple Targets to Inhibit NF-κB Activation. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 412-423.	4.3	76
18	Emerging properties of cannabinoid medicines in management of multiple sclerosis. Trends in Neurosciences, 2005, 28, 272-276.	8.6	75

GARETH PRYCE

#	Article	IF	CITATIONS
19	Autoimmune tolerance eliminates relapses but fails to halt progression in a model of multiple sclerosis. Journal of Neuroimmunology, 2005, 165, 41-52.	2.3	70
20	A Role for the Plasminogen Activator System in Inflammation and Neurodegeneration in the Central Nervous System during Experimental Allergic Encephalomyelitis. American Journal of Pathology, 2005, 167, 545-554.	3.8	70
21	UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington's disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. European Neuropsychopharmacology, 2006, 16, 7-18.	0.7	70
22	Suppression of Autoimmune Retinal Disease by Lovastatin Does Not Require Th2 Cytokine Induction. Journal of Immunology, 2005, 174, 2327-2335.	0.8	66
23	Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. Journal of Biological Chemistry, 2016, 291, 4356-4373.	3.4	66
24	Cannabinoids and neuroprotection in CNS inflammatory disease. Journal of the Neurological Sciences, 2005, 233, 21-25.	0.6	60
25	New potent and selective inhibitors of anandamide reuptake with antispastic activity in a mouse model of multiple sclerosis. British Journal of Pharmacology, 2006, 147, 83-91.	5.4	60
26	Practical guide to the induction of relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. Multiple Sclerosis and Related Disorders, 2012, 1, 29-38.	2.0	60
27	An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss. Journal of Neuroimmunology, 2008, 201-202, 200-211.	2.3	59
28	Factors controlling T-cell migration across rat cerebral endothelium in vitro. Journal of Neuroimmunology, 1997, 75, 84-94.	2.3	58
29	A Role for Caspase-1 and -3 in the Pathology of Experimental Allergic Encephalomyelitis. American Journal of Pathology, 2002, 161, 1577-1586.	3.8	57
30	Potential mechanisms of action related to the efficacy and safety of cladribine. Multiple Sclerosis and Related Disorders, 2019, 30, 176-186.	2.0	57
31	The Endocannabinoid System and Multiple Sclerosis. Current Pharmaceutical Design, 2008, 14, 2326-2336.	1.9	56
32	Comparison of the immunological properties of rat cerebral and aortic endothelium. Journal of Neuroimmunology, 1990, 30, 161-168.	2.3	55
33	Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis. Multiple Sclerosis Journal, 2011, 17, 939-948.	3.0	52
34	Structural features of the autoantigens involved in thyroid autoimmune disease: The thyroid microsomal/microvillar antigen. Molecular Immunology, 1985, 22, 629-642.	2.2	51
35	Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathologica, 2020, 140, 143-167.	7.7	48
36	Induction of Ia molecules on brain endothelium is related to susceptibility to experimental allergic encephalomyelitis. Journal of Neuroimmunology, 1989, 21, 87-90.	2.3	44

#	Article	IF	CITATIONS
37	Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2) Tj ETQq1	1 0.784314 i 2.5	rgBT /Overloc 43
	2013, 8, e76907.		
38	Depletion of <scp>CD</scp> 52â€positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immuneâ€tolerance promoting <scp>CD</scp> 8 Tâ€cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology, 2017, 150, 444-455.	4.4	43
39	Learning from other autoimmunities to understand targeting of B cells to control multiple sclerosis. Brain, 2018, 141, 2834-2847.	7.6	43
40	Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids. Journal of NeuroImmune Pharmacology, 2015, 10, 281-292.	4.1	42
41	Synergy between interferons and monokines in MHC induction on brain endothelium. Immunology Letters, 1988, 17, 267-271.	2.5	37
42	Oligoclonal bands in multiple sclerosis; Functional significance and therapeutic implications. Does the specificity matter?. Multiple Sclerosis and Related Disorders, 2018, 25, 131-137.	2.0	37
43	Lymphocyte migration into the CNS modelled in vitro. Journal of Neuroimmunology, 1992, 40, 167-171.	2.3	36
44	Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis. Brain, 2014, 137, 92-108.	7.6	36
45	Increased expression of colonyâ€stimulating factorâ€1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Clia, 2018, 66, 2108-2125.	4.9	36
46	Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi <scp>ABH</scp> mice. Immunology, 2016, 149, 146-156.	4.4	35
47	Changes in CB1 receptors in motor-related brain structures of chronic relapsing experimental allergic encephalomyelitis mice. Brain Research, 2006, 1107, 199-205.	2.2	34
48	The therapeutic potential of cannabis in multiple sclerosis. Expert Opinion on Investigational Drugs, 2003, 12, 561-567.	4.1	32
49	Control of spasticity in a multiple sclerosis model using central nervous systemâ€excluded CB ₁ cannabinoid receptor agonists. FASEB Journal, 2014, 28, 117-130.	0.5	32
50	Alemtuzumab depletion failure can occur in multiple sclerosis. Immunology, 2018, 154, 253-260.	4.4	32
51	Potential Control of Multiple Sclerosis by Cannabis and the Endocannabinoid System. CNS and Neurological Disorders - Drug Targets, 2012, 11, 624-641.	1.4	32
52	Myelin/Axonal Pathology in Interleukin-12 Induced Serial Relapses of Experimental Allergic Encephalomyelitis in the Lewis Rat. American Journal of Pathology, 2001, 158, 2127-2138.	3.8	31
53	Endocannabinoids in Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Handbook of Experimental Pharmacology, 2015, 231, 213-231.	1.8	29
54	The biology that underpins the therapeutic potential of cannabis-based medicines for the control of spasticity in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2012, 1, 64-75.	2.0	28

GARETH PRYCE

#	Article	IF	CITATIONS
55	Epitope spread is not critical for the relapse and progression of MOG 8-21 induced EAE in Biozzi ABH mice. Journal of Neuroimmunology, 2005, 164, 76-84.	2.3	26
56	Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis. Acta Neuropathologica Communications, 2013, 1, 84.	5.2	26
57	Pentraxinâ€3 is upregulated in the central nervous system during MS and EAE, but does not modulate experimental neurological disease. European Journal of Immunology, 2016, 46, 701-711.	2.9	22
58	Big conductance calciumâ€activated potassium channel openers control spasticity without sedation. British Journal of Pharmacology, 2017, 174, 2662-2681.	5.4	22
59	Characterisation of Transcriptional Changes in the Spinal Cord of the Progressive Experimental Autoimmune Encephalomyelitis Biozzi ABH Mouse Model by RNA Sequencing. PLoS ONE, 2016, 11, e0157754.	2.5	22
60	An assay for the analysis of lymphocyte migration across cerebral endothelium in vitro. Journal of Immunological Methods, 1994, 167, 55-63.	1.4	21
61	Mifepristone or inhibition of 11β-hydroxylase activity potentiates the sedating effects of the cannabinoid receptor-1 agonist Δ(9)-tetrahydrocannabinol in mice. Neuroscience Letters, 2003, 341, 164-166.	2.1	21
62	The Irony of Humanization: Alemtuzumab, the First, But One of the Most Immunogenic, Humanized Monoclonal Antibodies. Frontiers in Immunology, 2020, 11, 124.	4.8	21
63	Paracetamol-Induced Hypothermia Is Independent of Cannabinoids and Transient Receptor Potential Vanilloid-1 and Is Not Mediated by AM404. Drug Metabolism and Disposition, 2011, 39, 1689-1695.	3.3	20
64	Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis. Multiple Sclerosis and Related Disorders, 2017, 14, 46-50.	2.0	18
65	The occurrence of defined idiotypes on autoantibodies to mouse thyroglobulin. European Journal of Immunology, 1983, 13, 942-947.	2.9	17
66	Antidote to cannabinoid intoxication: the CB ₁ receptor inverse agonist, AM251, reverses hypothermic effects of the CB ₁ receptor agonist, CBâ€13, in mice. British Journal of Pharmacology, 2017, 174, 3790-3794.	5.4	17
67	Neurofilament a biomarker of neurodegeneration in autoimmune encephalomyelitis. Autoimmunity, 2012, 45, 298-303.	2.6	13
68	Molecular analysis of induced idiotypes associated with autoanti-thyroglobulin. Molecular Immunology, 1985, 22, 255-263.	2.2	10
69	Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2013, 10, 118.	7.2	10
70	Encephalitogenic and tolerogenic potential of altered peptide ligands of MOG and PLP in Biozzi ABH mice. Journal of Neuroimmunology, 2005, 167, 23-33.	2.3	8
71	Detecting and predicting neutralization of alemtuzumab responses in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	7
72	Characterization of the human thyroid microsomal antigen involved in thyroid autoimmunity. Biochemical Society Transactions, 1984, 12, 1118-1119.	3.4	6

GARETH PRYCE

#	Article	IF	CITATIONS
73	A Rapid Assay for Immunoglobulin in Hybridoma Supernatants. Immunological Investigations, 1983, 12, 465-471.	0.8	1
74	[53] Agglutination assay using protein A-sensitized erythrocytes for detection of immunoglobulin in tissue culture supernatants. Methods in Enzymology, 1986, 121, 556-561.	1.0	1
75	Cannabinoids fail to show evidence of slowing down the progression of multiple sclerosis. Evidence-Based Medicine, 2015, 20, 124-124.	0.6	1
76	Antigen-specific tolerization in human autoimmunity: Inhibition of interferon-beta1a anti-drug antibodies in multiple sclerosis: A case report. Multiple Sclerosis and Related Disorders, 2021, 56, 103284.	2.0	1
77	Cannabinoids for the Control of multiple Sclerosis. , 2008, , 375-394.		0