Ruben Hartkoorn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108021/publications.pdf

Version: 2024-02-01

44 papers 3,178 citations

28 h-index 243625 44 g-index

44 all docs

44 docs citations

times ranked

44

3980 citing authors

#	Article	IF	CITATIONS
1	Cross-Resistance between Clofazimine and Bedaquiline through Upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 2979-2981.	3.2	376
2	Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Molecular Medicine, 2014, 6, 372-383.	6.9	311
3	Towards a new tuberculosis drug: pyridomycin – nature's isoniazid. EMBO Molecular Medicine, 2012, 4, 1032-1042.	6.9	175
4	HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenetics and Genomics, 2010, 20, 112-120.	1.5	160
5	Low Levels of Pyrazinamide and Ethambutol in Children with Tuberculosis and Impact of Age, Nutritional Status, and Human Immunodeficiency Virus Infection. Antimicrobial Agents and Chemotherapy, 2006, 50, 407-413.	3.2	120
6	Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis, 2007, 87, 248-255.	1.9	119
7	Simple Model for Testing Drugs against Nonreplicating <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 4150-4158.	3.2	117
8	2-Carboxyquinoxalines Kill <i>Mycobacterium tuberculosis</i> through Noncovalent Inhibition of DprE1. ACS Chemical Biology, 2015, 10, 705-714.	3.4	116
9	Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein. PLoS Pathogens, 2012, 8, e1002621.	4.7	115
10	<i>In Vitro</i> Combination Studies of Benzothiazinone Lead Compound BTZ043 against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5790-5793.	3.2	112
11	Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis, 2010, 90, 354-360.	1.9	92
12	A druggable secretory protein maturase of Toxoplasma essential for invasion and egress. ELife, 2017, 6,	6.0	89
13	Streptomycin-Starved Mycobacterium tuberculosis 18b, a Drug Discovery Tool for Latent Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5782-5789.	3.2	88
14	The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4446-4452.	3.2	85
15	Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. Aids, 2005, 19, 2097-2102.	2.2	84
16	Anticytolytic Screen Identifies Inhibitors of Mycobacterial Virulence Protein Secretion. Cell Host and Microbe, 2014, 16, 538-548.	11.0	83
17	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	3.8	83
18	Assessing the essentiality of the decaprenylâ€phosphoâ€ <scp>d</scp> â€arabinofuranose pathway in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> i> using conditional mutants. Molecular Microbiology, 2014, 92, 194-211.	2.5	76

#	Article	IF	CITATIONS
19	Discovery and Biosynthesis of Gladiolin: A <i>Burkholderia gladioli</i> Antibiotic with Promising Activity against <i>Mycobacterium tuberculosis</i> Journal of the American Chemical Society, 2017, 139, 7974-7981.	13.7	73
20	Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG. Chemistry and Biology, 2015, 22, 917-927.	6.0	72
21	Genome-Wide Definition of the SigF Regulon in Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 2001-2009.	2.2	46
22	Intracellular accumulation of efavirenz and nevirapine is independent of P-glycoprotein activity in cultured CD4 T cells and primary human lymphocytes. Journal of Antimicrobial Chemotherapy, 2009, 64, 1002-1007.	3.0	41
23	Rv2466c Mediates the Activation of TP053 To Kill Replicating and Non-replicating <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2014, 9, 1567-1575.	3.4	41
24	Cultured CD4T cells and primary human lymphocytes express hOATPs: intracellular accumulation of saquinavir and lopinavir. British Journal of Pharmacology, 2008, 155, 875-883.	5 . 4	40
25	Tacrine-induced liver damage: an analysis of 19 candidate genes. Pharmacogenetics and Genomics, 2007, 17, 1091-1100.	1.5	37
26	Tuberculosis drugs: new candidates and how to find more. Future Microbiology, 2011, 6, 617-633.	2.0	36
27	A rapid and sensitive HPLC–MS method for the detection of plasma and cellular rifampicin. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 857, 76-82.	2.3	34
28	Mechanism of Action of 5-Nitrothiophenes against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 2944-2947.	3.2	31
29	Whole cell screen based identification of spiropiperidines with potent antitubercular properties. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3234-3245.	2.2	31
30	Bioluminescence for Assessing Drug Potency against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4012-4019.	3.2	30
31	Pyrrolomycins Are Potent Natural Protonophores. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	29
32	Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Nature Communications, 2022, 13, 115.	12.8	28
33	Lead selection and characterization of antitubercular compounds using the Nested Chemical Library. Tuberculosis, 2015, 95, S200-S206.	1.9	26
34	Synthesis and Antimycobacterial Activity of 2,1′-Dihydropyridomycins. ACS Medicinal Chemistry Letters, 2013, 4, 264-268.	2.8	24
35	MoS2/TiO2/SiNW surface as an effective substrate for LDI-MS detection of glucose and glutathione in real samples. Talanta, 2017, 171, 101-107.	5.5	24
36	Micrococcin P1 – A bactericidal thiopeptide active against Mycobacterium tuberculosis. Tuberculosis, 2016, 100, 95-101.	1.9	23

#	ARTICLE	IF	CITATION
37	Identification of aminopyrimidineâ€sulfonamides as potent modulators of Wag31â€mediated cell elongation in mycobacteria. Molecular Microbiology, 2017, 103, 13-25.	2.5	22
38	Total Synthesis of Ripostatin B and Structure–Activity Relationship Studies on Ripostatin Analogs. Journal of Organic Chemistry, 2018, 83, 7150-7172.	3.2	22
39	Down regulation of multidrug resistance protein-1 expression in patients with early rheumatoid arthritis exposed to methotrexate as a first disease-modifying antirheumatic drug. Annals of the Rheumatic Diseases, 2006, 65, 1390-1393.	0.9	20
40	Intracellular †boosting' of darunavir using known transport inhibitors in primary PBMC. British Journal of Clinical Pharmacology, 2009, 68, 375-380.	2.4	15
41	Sigma Factor F Does Not Prevent Rifampin Inhibition of RNA Polymerase or Cause Rifampin Tolerance in <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2010, 192, 5472-5479.	2.2	14
42	Intragenic Distribution of IS <i>6110</i> in Clinical Mycobacterium tuberculosis Strains: Bioinformatic Evidence for Gene Disruption Leading to Underdiagnosed Antibiotic Resistance. Microbiology Spectrum, 2021, 9, e0001921.	3.0	9
43	Rubrolone production by Dactylosporangium vinaceum: biosynthesis, modulation and possible biological function. Applied Microbiology and Biotechnology, 2021, 105, 5541-5551.	3.6	5
44	Expression of P-glycoprotein, multidrug-resistance proteins 1 and 2 in CEM, CEM(VBL), CEM(E1000), MDCKII(MRP1) and MDCKII(MRP2) cell lines. Aids, 2003, 17, 2276-8.	2.2	4