
Hartmut Geiger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1107928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature, 2015, 520, 549-552.	27.8	498
2	The ageing haematopoietic stem cell compartment. Nature Reviews Immunology, 2013, 13, 376-389.	22.7	489
3	Cdc42 Activity Regulates Hematopoietic Stem Cell Aging and Rejuvenation. Cell Stem Cell, 2012, 10, 520-530.	11.1	438
4	Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell, 2015, 17, 422-434.	11.1	353
5	Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell, 2017, 169, 807-823.e19.	28.9	339
6	Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nature Communications, 2018, 9, 5435.	12.8	325
7	A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature, 2013, 503, 392-396.	27.8	265
8	Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood, 2009, 114, 290-298.	1.4	197
9	Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells. Cell Reports, 2017, 18, 2608-2621.	6.4	172
10	Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells. Trends in Molecular Medicine, 2016, 22, 701-712.	6.7	135
11	HSC Niche Biology and HSC Expansion Ex Vivo. Trends in Molecular Medicine, 2017, 23, 799-819.	6.7	120
12	Osteopontin attenuates agingâ€associated phenotypes of hematopoietic stem cells. EMBO Journal, 2017, 36, 840-853.	7.8	109
13	Aging alters the epigenetic asymmetry of HSC division. PLoS Biology, 2018, 16, e2003389.	5.6	95
14	HSC Aging and Senescent Immune Remodeling. Trends in Immunology, 2015, 36, 815-824.	6.8	91
15	Aging in the lympho-hematopoietic stem cell compartment. Trends in Immunology, 2009, 30, 360-365.	6.8	90
16	Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nature Cell Biology, 2019, 21, 1309-1320.	10.3	88
17	Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nature Immunology, 2017, 18, 236-245.	14.5	85
18	Discovery and Characterization of an Endogenous CXCR4 Antagonist. Cell Reports, 2015, 11, 737-747.	6.4	80

#	Article	IF	CITATIONS
19	Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood, 2018, 132, 565-576.	1.4	69
20	Concise Review: Polarity in Stem Cells, Disease, and Aging. Stem Cells, 2010, 28, 1623-1629.	3.2	66
21	LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biology, 2018, 19, 189.	8.8	66
22	Aging of hematopoietic stem cells: DNA damage and mutations?. Experimental Hematology, 2016, 44, 895-901.	0.4	65
23	Hematopoietic stem cell aging. Current Opinion in Immunology, 2014, 29, 86-92.	5.5	54
24	Epigenetic age-predictor for mice based on three CpG sites. ELife, 2018, 7, .	6.0	54
25	Stem Cells, Aging, Niche, Adhesion and Cdc42: A Model for Changes in Cell-Cell Interactions and Hematopoietic Stem Cell Aging. Cell Cycle, 2007, 6, 884-887.	2.6	48
26	Stem Cell-Specific Mechanisms Ensure Genomic Fidelity within HSCs and upon Aging of HSCs. Cell Reports, 2015, 13, 2412-2424.	6.4	48
27	Limitations and challenges of genetic barcode quantification. Scientific Reports, 2017, 7, 43249.	3.3	43
28	Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. Journal of Experimental Medicine, 2017, 214, 165-181.	8.5	41
29	TLR4â€dependent shaping of the wound site by MSCs accelerates wound healing. EMBO Reports, 2020, 21, e48777.	4.5	41
30	Superoxide anion radicals induce <scp>IGF</scp> â€1 resistance through concomitant activation of <scp>PTP</scp> 1 <scp>B</scp> and <scp>PTEN</scp> . EMBO Molecular Medicine, 2015, 7, 59-77.	6.9	37
31	Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell, 2020, 19, e13208.	6.7	31
32	Cdc42 and aging of hematopoietic stem cells. Current Opinion in Hematology, 2013, 20, 295-300.	2.5	29
33	RHOA GTPase Controls YAP-Mediated EREG Signaling in Small Intestinal Stem Cell Maintenance. Stem Cell Reports, 2017, 9, 1961-1975.	4.8	29
34	Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood, 2020, 136, 1824-1836.	1.4	26
35	Alpha-Ketoglutarate Curbs Differentiation and Induces Cell Death in Mesenchymal Stromal Precursors with Mitochondrial Dysfunction. Stem Cells, 2017, 35, 1704-1718.	3.2	25
36	Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nature Communications, 2020, 11, 821.	12.8	25

#	Article	IF	CITATIONS
37	Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Computational and Structural Biotechnology Journal, 2021, 19, 5321-5332.	4.1	24
38	Rejuvenation of aged hematopoietic stem cells. Seminars in Hematology, 2017, 54, 51-55.	3.4	23
39	Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity. Haematologica, 2022, 107, 393-402.	3.5	23
40	Aging of intestinal stem cells. Stem Cell Reports, 2022, 17, 734-740.	4.8	23
41	Latexin Inactivation Enhances Survival and Long-Term Engraftment ofÂHematopoietic Stem Cells and Expands the Entire Hematopoietic System in Mice. Stem Cell Reports, 2017, 8, 991-1004.	4.8	21
42	Chromosome integrity checkpoints in stem and progenitor cells: transitions upon differentiation, pathogenesis, and aging. Cellular and Molecular Life Sciences, 2018, 75, 3771-3779.	5.4	21
43	Expression and Activity of the Small RhoGTPase Cdc42 in Blood Cells of Older Adults Are Associated With Age and Cardiovascular Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1196-1200.	3.6	20
44	Latexin regulation by HMGB2 is required for hematopoietic stem cell maintenance. Haematologica, 2020, 105, 573-584.	3.5	19
45	Persistent JunB activation in fibroblasts disrupts stem cell niche interactions enforcing skin aging. Cell Reports, 2021, 36, 109634.	6.4	17
46	HSPCs Get Their Motors Running for Asymmetric Fate Choice. Cell Stem Cell, 2014, 14, 1-2.	11.1	15
47	Targeted methods for epigenetic age predictions in mice. Scientific Reports, 2020, 10, 22439.	3.3	14
48	Cdc42â€Borg4â€Septin7 axis regulates HSC polarity and function. EMBO Reports, 2021, 22, e52931.	4.5	14
49	Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Human Molecular Genetics, 2020, 29, R248-R254.	2.9	12
50	HPRT and Purine Salvaging Are Critical for Hematopoietic Stem Cell Function. Stem Cells, 2019, 37, 1606-1614.	3.2	11
51	Hematopoietic Stem Cell Dynamics Are Regulated by Progenitor Demand: Lessons from a Quantitative Modeling Approach. Stem Cells, 2019, 37, 948-957.	3.2	11
52	A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells. Aging, 2021, 13, 4778-4793.	3.1	11
53	The Spindle Assembly Checkpoint Is Required for Hematopoietic Progenitor Cell Engraftment. Stem Cell Reports, 2017, 9, 1359-1368.	4.8	10
54	Attrition of X Chromosome Inactivation in Aged Hematopoietic Stem Cells. Stem Cell Reports, 2021, 16, 708-716.	4.8	10

#	Article	IF	CITATIONS
55	Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42. Experimental Cell Research, 2014, 329, 214-219.	2.6	9
56	Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Scientific Reports, 2016, 6, 31412.	3.3	9
57	Depleting senescent cells to combat aging. Nature Medicine, 2016, 22, 23-24.	30.7	9
58	Loss of DEK induces radioresistance of murine restricted hematopoietic progenitors. Experimental Hematology, 2018, 59, 40-50.e3.	0.4	9
59	KRasG12D expression in the bone marrow vascular niche affects hematopoiesis with inflammatory signals. Experimental Hematology, 2019, 79, 3-15.e4.	0.4	9
60	An aged bone marrow niche restrains rejuvenated hematopoietic stem cells. Stem Cells, 2021, 39, 1101-1106.	3.2	9
61	Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress. Blood, 2022, 139, 690-703.	1.4	8
62	Septin 6 regulates engraftment and lymphoid differentiation potential of murine long-term hematopoietic stem cells. Experimental Hematology, 2017, 55, 45-55.	0.4	7
63	FOXO activity adaptation safeguards the hematopoietic stem cell compartment in hyperglycemia. Blood Advances, 2020, 4, 5512-5526.	5.2	7
64	KDM6A, a histone demethylase, regulates stress hematopoiesis and early B-cell differentiation. Experimental Hematology, 2021, 99, 32-43.e13.	0.4	7
65	Rho-inhibiting C2IN-C3 fusion toxin inhibits chemotactic recruitment of human monocytes ex vivo and in mice in vivo. Archives of Toxicology, 2018, 92, 323-336.	4.2	6
66	Distinct Dynamics of Stem and Progenitor Cells in Blood of Polytraumatized Patients. Shock, 2019, 51, 430-438.	2.1	6
67	The lifespan quantitative trait locus gene <i>Securin</i> controls hematopoietic progenitor cell function. Haematologica, 2020, 105, 317-324.	3.5	5
68	Repolarization of HSC attenuates HSCs failure in Shwachman–Diamond syndrome. Leukemia, 2021, 35, 1751-1762.	7.2	5
69	Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. ELife, 2021, 10, .	6.0	5
70	Analysis of Aged Dysfunctional Intestinal Stem Cells. Methods in Molecular Biology, 2020, 2171, 41-52.	0.9	4
71	Septins in Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 801507.	3.7	3
72	HSC senescence upon irradiation. Blood, 2014, 123, 3060-3061.	1.4	2

5

#	ARTICLE	IF	CITATIONS
73	Reduced adhesion of aged intestinal stem cells contributes to an accelerated clonal drift. Life Science Alliance, 2022, 5, e202201408.	2.8	2
74	Stem Cell-like Megakaryocyte Progenitors As Driving Forces of IFN-Induced Emergency Megakaryopooesis. Blood, 2015, 126, 2391-2391.	1.4	1
75	Identifying Novel Genes and Signaling Pathways That Predispose to Therapy Related MDS (t-MDS). Blood, 2014, 124, 1905-1905.	1.4	1
76	A Limited Role for AMD3100 Induced Stem Cell Mobilization for Modulation of Thoracic Trauma Outcome. Shock, 2022, 57, 260-267.	2.1	1
77	Verjüngungskur für Zellen. Forschung, 2013, 38, 4-11.	0.0	0
78	Balance your folate or the yin and yang of folate in hematopoiesis. Haematologica, 2017, 102, 1969-1970.	3.5	0
79	Special section: Replication stress, a threat to the nuclear and mitochondrial genome. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 808, 53-55.	1.0	Ο
80	Hematopoietic Stem Cell Rejuvenation: Aging Alters the Epigenetic Asymmetry of Stem Cell Divisions. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S137-S138.	0.4	0
81	Lymphohematopoietic Stem Cells and Their Aging. , 2018, , 1-16.		Ο
82	Lymphohematopoietic Stem Cells and Their Aging. , 2019, , 995-1009.		0
83	Towards Understanding & Uncovering New Key Players in T-Cell Development upon Aging. Blood, 2019, 134, 2482-2482.	1.4	0
84	Hematopoietic Aging on Hematopoietic Stem Cell Activity. Blood, 2020, 136, SCI2-SCI2.	1.4	0