K David Wegner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11078975/publications.pdf

Version: 2024-02-01

24 2,075 17 24 papers citations h-index g-index

25 25 25 3386
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews, 2015, 44, 4792-4834.	38.1	795
2	Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coordination Chemistry Reviews, 2014, 273-274, 125-138.	18.8	164
3	A Rapid, Amplificationâ€Free, and Sensitive Diagnostic Assay for Singleâ€Step Multiplexed Fluorescence Detection of MicroRNA. Angewandte Chemie - International Edition, 2015, 54, 10024-10029.	13.8	164
4	Quantum-Dot-Based Förster Resonance Energy Transfer Immunoassay for Sensitive Clinical Diagnostics of Low-Volume Serum Samples. ACS Nano, 2013, 7, 7411-7419.	14.6	140
5	Lanthanides and Quantum Dots as Förster Resonance Energy Transfer Agents for Diagnostics and Cellular Imaging. Inorganic Chemistry, 2014, 53, 1824-1838.	4.0	121
6	Nanobodies and Nanocrystals: Highly Sensitive Quantum Dotâ€Based Homogeneous FRET Immunoassay for Serumâ€Based EGFR Detection. Small, 2014, 10, 734-740.	10.0	98
7	Upconverting nanoparticle to quantum dot FRET for homogeneous double-nano biosensors. RSC Advances, 2015, 5, 13270-13277.	3.6	89
8	High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters. ACS Nano, 2020, 14, 4973-4981.	14.6	62
9	Influence of Luminescence Quantum Yield, Surface Coating, and Functionalization of Quantum Dots on the Sensitivity of Time-Resolved FRET Bioassays. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2881-2892.	8.0	60
10	Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast <i>In Vivo</i> NIR-II Imaging. Bioconjugate Chemistry, 2020, 31, 1088-1092.	3.6	60
11	Nanobodies and Antibodies for Duplexed EGFR/HER2 Immunoassays Using Terbium-to-Quantum Dot FRET. Chemistry of Materials, 2016, 28, 8256-8267.	6.7	51
12	Compact quantum dot–antibody conjugates for FRET immunoassays with subnanomolar detection limits. Nanoscale, 2016, 8, 11275-11283.	5.6	46
13	High photoluminescence of shortwave infrared-emitting anisotropic surface charged gold nanoclusters. Nanoscale, 2019, 11, 12092-12096.	5.6	44
14	Three-Dimensional Solution-Phase Förster Resonance Energy Transfer Analysis of Nanomolar Quantum Dot Bioconjugates with Subnanometer Resolution. Chemistry of Materials, 2014, 26, 4299-4312.	6.7	37
15	Gallium \hat{a} \in a versatile element for tuning the photoluminescence properties of InP quantum dots. Chemical Communications, 2019, 55, 1663-1666.	4.1	35
16	Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 2019, 14, 100168.	4.5	29
17	Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein–protein interactions on cell membranes. Dalton Transactions, 2015, 44, 4994-5003.	3.3	24
18	Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection. Organic and Biomolecular Chemistry, 2013, 11, 6493.	2.8	13

#	Article	IF	CITATIONS
19	Tailoring the NIRâ€II Photoluminescence of Single Thiolated Au ₂₅ Nanoclusters by Selective Binding to Proteins**. Chemistry - A European Journal, 2022, 28, .	3.3	13
20	Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging. Chemical Communications, 2022, 58, 2967-2970.	4.1	10
21	Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Analytical and Bioanalytical Chemistry, 2022, 414, 4427-4439.	3.7	6
22	Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types. ChemTexts, 2022, 8, 9.	1.9	5
23	Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET. Molecules, 2020, 25, 3679.	3.8	4
24	One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands. Inorganic Chemistry, 2022, 61, 7207-7211.	4.0	4