Rajesh Chopra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11078790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SimPLIT: Simplified Sample Preparation for Large-Scale Isobaric Tagging Proteomics. Journal of Proteome Research, 2022, 21, 1842-1856.	3.7	9
2	Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chemical Biology, 2021, 28, 283-299.	5.2	15
3	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	27.6	0
4	A critical evaluation of the approaches to targeted protein degradation for drug discovery. Drug Discovery Today: Technologies, 2019, 31, 5-13.	4.0	37
5	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540
6	A First-in-Human Study of Novel Cereblon Modulator Avadomide (CC-122) in Advanced Malignancies. Clinical Cancer Research, 2019, 25, 90-98.	7.0	73
7	Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2018, 77, 1516-1523.	0.9	57
8	Activity of lenalidomide in mantle cell lymphoma can be explained by <scp>NK</scp> cellâ€nediated cytotoxicity. British Journal of Haematology, 2017, 179, 399-409.	2.5	39
9	Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell, 2016, 29, 563-573.	16.8	140
10	A Dual Color Immunohistochemistry Assay for Measurement of Cereblon in Multiple Myeloma Patient Samples. Applied Immunohistochemistry and Molecular Morphology, 2016, 24, 695-702.	1.2	13
11	Pomalidomide in combination with dexamethasone results in synergistic antiâ€tumour responses in preâ€clinical models of lenalidomideâ€resistant multiple myeloma. British Journal of Haematology, 2016, 172, 889-901.	2.5	47
12	Differential effects of lenalidomide during plasma cell differentiation. Oncotarget, 2016, 7, 28096-28111.	1.8	19
13	A phase I doseâ€escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CCâ€223 in patients with advanced solid tumors or multiple myeloma. Cancer, 2015, 121, 3481-3490.	4.1	68
14	RAP-011 improves erythropoiesis in zebrafish model of Diamond-Blackfan anemia through antagonizing lefty1. Blood, 2015, 126, 880-890.	1.4	35
15	Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood, 2015, 126, 50-60.	1.4	123
16	CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood, 2015, 126, 779-789.	1.4	148
17	Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature, 2015, 523, 183-188.	27.8	648
18	Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration. Cancer Chemotherapy and Pharmacology, 2015, 76, 699-712.	2.3	81

Rajesh Chopra

#	Article	IF	CITATIONS
19	Pharmacokinetics and pharmacodynamics of <i>nab</i> â€paclitaxel in patients with solid tumors: Disposition kinetics and pharmacology distinct from solventâ€based paclitaxel. Journal of Clinical Pharmacology, 2014, 54, 1097-1107.	2.0	94
20	An activin receptor <scp>II</scp> A ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. British Journal of Haematology, 2014, 165, 870-882.	2.5	93
21	Immunomodulatory agents lenalidomide and pomalidomide coâ€stimulate <scp>T</scp> cells by inducing degradation of <scp>T</scp> cell repressors <scp>I</scp> karos and <scp>A</scp> iolos via modulation of the <scp>E</scp> 3 ubiquitin ligase complex <scp>CRL</scp> 4 <scp>^{CRBN}</scp> . British lournal of Haematology. 2014. 164. 811-821.	2.5	505
22	Measuring cereblon as a biomarker of response or resistance to lenalidomide and pomalidomide requires use of standardized reagents and understanding of gene complexity. British Journal of Haematology, 2014, 164, 233-244.	2.5	93
23	An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nature Medicine, 2014, 20, 398-407.	30.7	245
24	IMiDs® Immunomodulatory Agents Regulate Interferon-Stimulated Genes through Cereblon-Mediated Aiolos Destruction in Multiple Myeloma (MM) Cells: Identification of a Novel Mechanism of Action and Pathway for Resistance. Blood, 2014, 124, 3432-3432.	1.4	4
25	CC-122 Degrades the Lymphoid Transcription Factor Aiolos (IKZF3) By Modulating Cereblon and Shows Clinical Activity in a Phase Ib Study of Subjects with Relapsed or Refractory Non-Hodgkin's Lymphoma and Multiple Myeloma. Blood, 2014, 124, 3500-3500.	1.4	8
26	The mTOR Kinase Inhibitors, CC214-1 and CC214-2, Preferentially Block the Growth of EGFRvIII-Activated Glioblastomas. Clinical Cancer Research, 2013, 19, 5722-5732.	7.0	46
27	Lenalidomide efficacy in activated <scp>B</scp> â€cellâ€like subtype diffuse large <scp>B</scp> â€cell lymphoma is dependent upon <scp>IRF</scp> 4 and cereblon expression. British Journal of Haematology, 2013, 160, 487-502.	2.5	141
28	Immunomodulatory Effects in a Phase II Study of Lenalidomide Combined with Cetuximab in Refractory KRAS-Mutant Metastatic Colorectal Cancer Patients. PLoS ONE, 2013, 8, e80437.	2.5	28
29	A First In Human Dose Escalation Study Of CC-122, A First-In-Class Pleiotropic Pathway Modulatorâ,,¢ (PPM) Compound In Subjects With Relapsed Or Refractory Solid Tumors, Multiple Myeloma and Non-Hodgkin's Lymphoma. Blood, 2013, 122, 2905-2905.	1.4	5
30	Sotatercept, An Activin Receptor-2a Ligand Trap, Modulates Hepcidin Levels In Primary Human Hepatocytes. Blood, 2013, 122, 3441-3441.	1.4	1
31	Phase I expansion trial of an oral TORC1/TORC2 inhibitor (CC-223) in diffuse large B-cell lymphoma (DLBCL) and multiple myeloma (MM) Journal of Clinical Oncology, 2013, 31, 8522-8522.	1.6	5
32	Lenalidomide downregulates the cell survival factor, interferon regulatory factorâ€4, providing a potential mechanistic link for predicting response. British Journal of Haematology, 2011, 154, 325-336.	2.5	150
33	A review of the history, properties, and use of the immunomodulatory compound lenalidomide. Annals of the New York Academy of Sciences, 2011, 1222, 76-82.	3.8	67
34	Mislocalization or low expression of mutated Shwachman–Bodian–Diamond syndrome protein. International Journal of Hematology, 2011, 94, 54-62.	1.6	3
35	Targeting the Wnt/β-Catenin Signaling Pathway and CD44-Mediated Adhesion As a Rational Approach to Overcome Lenalidomide Resistance in Multiple Myeloma. Blood, 2011, 118, 928-928.	1.4	2
36	Pleiotropic mechanisms of action of lenalidomide efficacy in del(5q) myelodysplastic syndromes. Expert Review of Anticancer Therapy, 2010, 10, 1663-1672.	2.4	33

RAJESH CHOPRA

#	Article	IF	CITATIONS
37	Shwachman-Diamond Syndrome is not necessary for the terminal maturation of neutrophils but is important for maintaining viability of granulocyte precursors. Experimental Hematology, 2007, 35, 579-586.	0.4	21
38	Results of alemtuzumab-based reduced-intensity allogeneic transplantation for chronic lymphocytic leukemia: a British Society of Blood and Marrow Transplantation Study. Blood, 2006, 107, 1724-1730.	1.4	169
39	Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood, 2005, 105, 4532-4539.	1.4	228
40	Clinical evidence of a graft-versus-Hodgkin's-lymphoma effect after reduced-intensity allogeneic transplantation. Lancet, The, 2005, 365, 1934-1941.	13.7	273
41	Results of Alemtuzumab-Based Reduced-Intensity Allogeneic Transplantation for Advanced Chronic Lymphocytic Leukemia: A BSBMT Study Blood, 2005, 106, 2899-2899.	1.4	0
42	Outcomes after alemtuzumab-containing reduced-intensity allogeneic transplantation regimen for relapsed and refractory non-Hodgkin lymphoma. Blood, 2004, 104, 3865-3871.	1.4	280
43	The Src-selective Kinase Inhibitor PP1 Also Inhibits Kit and Bcr-Abl Tyrosine Kinases. Journal of Biological Chemistry, 2003, 278, 4847-4853.	3.4	163
44	Role of Nonmyeloablative Allogeneic Stem-Cell Transplantation After Failure of Autologous Transplantation in Patients With Lymphoproliferative Malignancies. Journal of Clinical Oncology, 2002, 20, 4022-4031.	1.6	119
45	AmBisome in the treatment of fungal infections: the UK experience. Journal of Antimicrobial Chemotherapy, 2002, 49, 43-47.	3.0	15
46	Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen. Blood, 2002, 99, 1071-1078.	1.4	333
47	The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood, 2002, 100, 3108-3114.	1.4	209
48	Dynamics of telomere shortening in neutrophils and T lymphocytes during ageing and the relationship to skewed X chromosome inactivation patterns. British Journal of Haematology, 2000, 109, 272-279.	2.5	80
49	In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood, 2000, 96, 2419-2425.	1.4	483
50	BCR – ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner. Oncogene, 1998, 16, 335-348.	5.9	108