
Paolo Salvatori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11077721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. Journal of Physical Chemistry C, 2013, 117, 3874-3887.	3.1	82
2	Thiocyanate-Free Ruthenium(II) Sensitizer with a Pyrid-2-yltetrazolate Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2013, 52, 10723-10725.	4.0	47
3	Corrole dyes for dye-sensitized solar cells: The crucial role of the dye/semiconductor energy level alignment. Computational and Theoretical Chemistry, 2014, 1030, 59-66.	2.5	38
4	Metalâ€Free Benzodithiopheneâ€Containing Organic Dyes for Dye‧ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 84-94.	2.4	36
5	New thiocyanate-free ruthenium(<scp>ii</scp>) sensitizers with different pyrid-2-yl tetrazolate ligands for dye-sensitized solar cells. Dalton Transactions, 2015, 44, 11788-11796.	3.3	28
6	Functionalized Ruthenium Dialkynyl Complexes with High Second-Order Nonlinear Optical Properties and Good Potential as Dye Sensitizers for Solar Cells. Organometallics, 2015, 34, 94-104.	2.3	27
7	Triphenylamine-functionalized corrole sensitizers for solar-cell applications. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 194-202.	1.8	26
8	Benzodithiophene based organic dyes for DSSC: Effect of alkyl chain substitution on dye efficiency. Dyes and Pigments, 2015, 121, 351-362.	3.7	25
9	A new terpyridine cobalt complex redox shuttle for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 406, 106-112.	2.4	21
10	Near-infrared absorbing unsymmetrical Zn(II) phthalocyanine for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 407, 289-296.	2.4	21
11	New terpyridine-based ruthenium complexes for dye sensitized solar cells applications. Inorganica Chimica Acta, 2016, 442, 158-166.	2.4	17
12	Stability of ruthenium/organic dye co-sensitized solar cells: a joint experimental and computational investigation. RSC Advances, 2014, 4, 57620-57628.	3.6	14
13	Assessment of new gem-silanediols as suitable sensitizers for dye-sensitized solarÂcells. Journal of Organometallic Chemistry, 2013, 723, 198-206.	1.8	11
14	Novel heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and application in dye-sensitized solar cells. Dalton Transactions, 2015, 44, 5369-5378.	3.3	10