
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11074579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticles Advancing Cancer Immunotherapy. , 2019, , 283-304.		1
2	Aged macular degeneration: current therapeutics for management and promising new drug candidates. Drug Discovery Today, 2017, 22, 1671-1679.	6.4	21
3	Chasing the personalized medicine dream through biomarker validation in colorectal cancer. Drug Discovery Today, 2017, 22, 111-119.	6.4	22
4	Topical Ophthalmic Formulation of Trichostatin A and SurR9-C84A for Quick Recovery Post-alkali Burn of Corneal Haze. Frontiers in Pharmacology, 2017, 8, 223.	3.5	3
5	Progress on Azadirachta indica Based Biopesticides in Replacing Synthetic Toxic Pesticides. Frontiers in Plant Science, 2017, 8, 610.	3.6	169
6	Multimodal Nanomedicine Strategies for Targeting Cancer Cells as well as Cancer Stem Cell Signalling Mechanisms. Mini-Reviews in Medicinal Chemistry, 2017, 17, 1688-1695.	2.4	3
7	Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. International Journal of Nanomedicine, 2016, 11, 1349.	6.7	10
8	Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization. International Journal of Molecular Sciences, 2016, 17, 913.	4.1	24
9	Ophthalmic Combination of SurR9-C84A and Trichostatin-A Targeting Molecular Pathogenesis of Alkali Burn. Frontiers in Pharmacology, 2016, 7, 226.	3.5	1
10	E-Cadherin Aptamer-Conjugated Delivery of Doxorubicin for Targeted Inhibition of Prostate Cancer Cells. Australian Journal of Chemistry, 2016, 69, 1108.	0.9	6
11	Targeting CD44, ABCG2 and CD133 markers using aptamers: in silico analysis of CD133 extracellular domain 2 and its aptamer. RSC Advances, 2016, 6, 32115-32123.	3.6	11
12	Nucleolin-aptamer therapy in retinoblastoma: molecular changes and mass spectrometry–based imaging. Molecular Therapy - Nucleic Acids, 2016, 5, e358.	5.1	18
13	Doxorubicin Conjugated to Immunomodulatory Anticancer Lactoferrin Displays Improved Cytotoxicity Overcoming Prostate Cancer Chemo resistance and Inhibits Tumour Development in TRAMP Mice. Scientific Reports, 2016, 6, 32062.	3.3	39
14	A Study of Gene Expression of Survivin, its Antiapoptotic Variants, and Targeting Survivin In Vitro for Therapy in Retinoblastoma. Journal of Pediatric Hematology/Oncology, 2016, 38, e230-e242.	0.6	4
15	Multimodal iron oxide (Fe ₃ O ₄)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER ⁻ /PR ⁻ /HER2 ⁻). Nanomedicine, 2016, 11, 249-268.	3.3	34
16	Antiparasitic and immunomodulatory potential of oral nanocapsules encapsulated lactoferrin protein against <i>Plasmodium berghei</i> . Nanomedicine, 2016, 11, 47-62.	3.3	10
17	Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells. Biomicrofluidics, 2015, 9, 054110.	2.4	24
18	Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model. International Journal of Nanomedicine, 2015, 10, 1019.	6.7	10

#	Article	IF	CITATIONS
19	Neurobehavioral burden of multiple sclerosis with nanotheranostics. Neuropsychiatric Disease and Treatment, 2015, 11, 2675.	2.2	6
20	Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells. International Journal of Nanomedicine, 2015, 11, 25.	6.7	15
21	Cissus quadrangularis inhibits IL-1β induced inflammatory responses on chondrocytes and alleviates bone deterioration in osteotomized rats via p38 MAPK signaling. Drug Design, Development and Therapy, 2015, 9, 2927.	4.3	14
22	Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction. Drug Design, Development and Therapy, 2015, 9, 3821.	4.3	20
23	Oral administration of iron-saturated bovine lactoferrin–loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism. International Journal of Nanomedicine, 2015, 10, 4081.	6.7	20
24	Multifunctional Iron Bound Lactoferrin and Nanomedicinal Approaches to Enhance Its Bioactive Functions. Molecules, 2015, 20, 9703-9731.	3.8	98
25	Lactoferrin induced neuronal differentiation: A boon for brain tumours. International Journal of Developmental Neuroscience, 2015, 41, 28-36.	1.6	17
26	Nanocapsules loaded with iron-saturated bovine lactoferrin have antimicrobial therapeutic potential and maintain calcium, zinc and iron metabolism. Nanomedicine, 2015, 10, 1289-1314.	3.3	20
27	Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine, 2015, 10, 35-55.	3.3	65
28	LNA aptamer based multi-modal, Fe 3 O 4 -saturated lactoferrin (Fe 3 O 4 -bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials, 2015, 71, 84-99.	11.4	82
29	EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. Journal of Biomedical Science, 2015, 22, 4.	7.0	69
30	Chimeric nucleolin aptamer with survivin DNAzyme for cancer cell targeted delivery. Chemical Communications, 2015, 51, 6940-6943.	4.1	21
31	Locked nucleic acid modified bi-specific aptamer-targeted nanoparticles carrying survivin antagonist towards effective colon cancer therapy. RSC Advances, 2015, 5, 29008-29016.	3.6	18
32	Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer. BMC Cancer, 2015, 15, 425.	2.6	85
33	Brain targeted PLGA nanocarriers alleviating amyloid-Î' expression and preserving basal survivin in degenerating mice model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2423-2431.	3.8	3
34	Targeting Cancer Cells Using LNA-Modified Aptamer-siRNA Chimeras. Nucleic Acid Therapeutics, 2015, 25, 317-322.	3.6	23
35	Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers. Drug Discovery Today, 2015, 20, 578-587.	6.4	68
36	EpCAM Aptamer-siRNA Chimera Targets and Regress Epithelial Cancer. PLoS ONE, 2015, 10, e0132407.	2.5	35

#	Article	IF	CITATIONS
37	Nanoformulated cell-penetrating survivin mutant and its dual actions. International Journal of Nanomedicine, 2014, 9, 3279.	6.7	11
38	Antiarthritic and chondroprotective activity of Lakshadi Guggul in novel alginate-enclosed chitosan calcium phosphate nanocarriers. Nanomedicine, 2014, 9, 819-837.	3.3	21
39	Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discovery Today, 2014, 19, 1309-1321.	6.4	33
40	The effect of oral administration of iron saturated-bovine lactoferrin encapsulated chitosan-nanocarriers on osteoarthritis. Biomaterials, 2014, 35, 7522-7534.	11.4	61
41	Identification of Unprecedented Anticancer Properties of High Molecular Weight Biomacromolecular Complex Containing Bovine Lactoferrin (HMW-bLf). PLoS ONE, 2014, 9, e106568.	2.5	24
42	Survivin Signaling in Clinical Oncology: A Multifaceted Dragon. Medicinal Research Reviews, 2013, 33, 765-789.	10.5	79
43	Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discovery Today, 2013, 18, 1292-1300.	6.4	57
44	Immunomodulatory Lactoferrin in the Regulation of Apoptosis Modulatory Proteins in Cancer. Protein and Peptide Letters, 2013, 20, 450-458.	0.9	31
45	Immunomodulatory Lactoferrin in the Regulation of Apoptosis Modulatory Proteins in Cancer. Protein and Peptide Letters, 2013, 20, 450-458.	0.9	23
46	Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come?. Nanomedicine, 2012, 7, 899-916.	3.3	22
47	Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide. Anti-Cancer Drugs, 2012, 23, 471-482.	1.4	13
48	Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. International Journal of Nanomedicine, 2012, 7, 3259.	6.7	84
49	Novel nanoplatform for oral delivery of anti-cancer biomacromolecules. International Journal of Nanotechnology, 2012, 9, 942.	0.2	10
50	Cancer Targeted Nanoparticles Specifically Induce Apoptosis in Cancer Cells and Spare Normal Cells. Australian Journal of Chemistry, 2012, 65, 5.	0.9	18
51	Nanotechnology based platforms for survivin targeted drug discovery. Expert Opinion on Drug Discovery, 2012, 7, 1083-1092.	5.0	12
52	Emerging engineered magnetic nanoparticulate probes for targeted MRI of atherosclerotic plaque macrophages. Nanomedicine, 2012, 7, 735-749.	3.3	24
53	Novel alginate-enclosed chitosan–calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine, 2012, 7, 1521-1550.	3.3	95
54	Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 399-414.	3.3	111

#	Article	IF	CITATIONS
55	Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Molecular Vision, 2012, 18, 2783-95.	1.1	51
56	The role of nanomedicine in cell based therapeutics in cancer and inflammation. International Journal of Molecular and Cellular Medicine, 2012, 1, 133-44.	1.1	13
57	Role of nanomedicine in reversing drug resistance mediated by ATP binding cassette transporters and P-glycoprotein in melanoma. Nanomedicine, 2011, 6, 701-714.	3.3	13
58	Chimeric aptamers in cancer cell-targeted drug delivery. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 459-477.	5.2	118
59	Lactoferrin and cancer in different cancer models. Frontiers in Bioscience - Scholar, 2011, S3, 1080.	2.1	61
60	Targeting Hepatitis B Virus and Human Papillomavirus Induced Carcinogenesis: Novel Patented Therapeutics. Recent Patents on Anti-infective Drug Discovery, 2011, 6, 158-174.	0.8	11
61	Novel survivin mutant protects differentiated SK-N-SH human neuroblastoma cells from activated T-cell neurotoxicity. Journal of Neuroimmunology, 2011, 233, 18-28.	2.3	14
62	Antiangiogenic therapy using nanotechnological-based delivery system. Drug Discovery Today, 2011, 16, 188-202.	6.4	33
63	Targeting survivin in cancer: the cell-signalling perspective. Drug Discovery Today, 2011, 16, 485-494.	6.4	110
64	Survivin Mutant Protects Differentiated Dopaminergic SK-N-SH Cells Against Oxidative Stress. PLoS ONE, 2011, 6, e15865.	2.5	22
65	Antioxidant Enzyme Activities of Iron-Saturated Bovine Lactoferrin (Fe-bLf) in Human Gut Epithelial Cells Under Oxidative Stress. Medicinal Chemistry, 2011, 7, 224-230.	1.5	37
66	Survivin: A target from brain cancer to neurodegenerative disease. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 535-554.	5.2	46
67	Proliferative and protective effects of SurR9-C84A on differentiated neural cells. Journal of Neuroimmunology, 2010, 227, 120-132.	2.3	27
68	MicroRNA in human cancer and chronic inflammatory diseases. Frontiers in Bioscience - Scholar, 2010, S2, 1113-1126.	2.1	45
69	Targeting survivin in cancer: patent review. Expert Opinion on Therapeutic Patents, 2010, 20, 1723-1737.	5.0	47
70	Applications of aptamers in nanodelivery systems in cancer, eye and inflammatory diseases. Nanomedicine, 2010, 5, 1435-1445.	3.3	38
71	Recent Advances on the Possible Neuroprotective Activities of Epstein- Barr Virus Oncogene BARF1 Protein in Chronic Inflammatory Disorders of Central Nervous System. Current Neuropharmacology, 2010, 8, 268-275.	2.9	10
72	Applications of Nanomedicine in Antibacterial Medical Therapeutics and Diagnostics~!2009-08-26~!2009-11-25~!2010-02-24~!. The Open Tropical Medicine Journal, 2010, 3, 1-9.	0.3	22

#	Article	IF	CITATIONS
73	Recent Advances on the Roles of NO in Cancer and Chronic Inflammatory Disorders. Current Medicinal Chemistry, 2009, 16, 2373-2394.	2.4	208
74	Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal. BMC Immunology, 2009, 10, 7.	2.2	44
75	Molecular and Biotechnological Advances in Milk Proteins in Relation to Human Health. Current Protein and Peptide Science, 2009, 10, 308-338.	1.4	75
76	â€~Ironâ€saturated' lactoferrin is a potent natural adjuvant for augmenting cancer chemotherapy. Immunology and Cell Biology, 2008, 86, 277-288.	2.3	86
77	A pseudosymmetric cell adhesion regulatory domain in the β7 tail of the integrin α4β7 that interacts with focal adhesion kinase and src. European Journal of Immunology, 2006, 36, 2203-2214.	2.9	13
78	Simultaneous neuroprotection and blockade of inflammation reverses autoimmune encephalomyelitis. Brain, 2004, 127, 1313-1331.	7.6	105
79	Mucosal vascular addressin cell adhesion moleculeâ€1 is expressed outside the endothelial lineage on fibroblasts and melanoma cells. Immunology and Cell Biology, 2003, 81, 320-327.	2.3	9
80	Requirements for ICAM-1 immunogene therapy of lymphoma. Cancer Gene Therapy, 2003, 10, 468-476.	4.6	20
81	Temporal Expression of Heat Shock Proteins 60 and 70 at Lesion-Prone Sites During Atherogenesis in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1991-1997.	2.4	85
82	Effects of Survivin Antagonists on Growth of Established Tumors and B7-1 Immunogene Therapy. Journal of the National Cancer Institute, 2001, 93, 1541-1552.	6.3	160
83	Prevention of a chronic progressive form of experimental autoimmune encephalomyelitis by an antibody against mucosal addressin cell adhesion molecule-1, given early in the course of disease progression. Immunology and Cell Biology, 2000, 78, 641-645.	2.3	58