Ani Grigorian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11074270/publications.pdf Version: 2024-02-01

ANI CRICORIAN

#	Article	IF	CITATIONS
1	Increasing cell permeability of N-acetylglucosamine via 6-acetylation enhances capacity to suppress T-helper 1 (TH1)/TH17 responses and autoimmunity. PLoS ONE, 2019, 14, e0214253.	2.5	13
2	N-glycosylation bidirectionally extends the boundaries of thymocyte positive selection by decoupling Lck from Ca2+ signaling. Nature Immunology, 2014, 15, 1038-1045.	14.5	48
3	Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N-glycosylation. Seminars in Immunopathology, 2012, 34, 415-424.	6.1	46
4	Interleukinâ€2, Interleukinâ€7, T cellâ€mediated autoimmunity, and Nâ€glycosylation. Annals of the New York Academy of Sciences, 2012, 1253, 49-57.	3.8	33
5	N-Acetylglucosamine Inhibits T-helper 1 (Th1)/T-helper 17 (Th17) Cell Responses and Treats Experimental Autoimmune Encephalomyelitis. Journal of Biological Chemistry, 2011, 286, 40133-40141.	3.4	97
6	<i>Mgat5</i> Deficiency in T Cells and Experimental Autoimmune Encephalomyelitis. ISRN Neurology, 2011, 2011, 1-6.	1.5	21
7	Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nature Communications, 2011, 2, 334.	12.8	142
8	Manipulating Cell Surface Glycoproteins by Targeting N-Glycan–Galectin Interactions. Methods in Enzymology, 2010, 480, 245-266.	1.0	24
9	T Cell Receptor Signaling Co-regulates Multiple Golgi Genes to Enhance N-Glycan Branching. Journal of Biological Chemistry, 2009, 284, 32454-32461.	3.4	50
10	Tâ€cell growth, cell surface organization, and the galectin–glycoprotein lattice. Immunological Reviews, 2009, 230, 232-246.	6.0	114
11	N-Glycan Processing Deficiency Promotes Spontaneous Inflammatory Demyelination and Neurodegeneration. Journal of Biological Chemistry, 2007, 282, 33725-33734.	3.4	91
12	Control of T Cell-mediated Autoimmunity by Metabolite Flux to N-Glycan Biosynthesis. Journal of Biological Chemistry, 2007, 282, 20027-20035.	3.4	122
13	Complex N-Glycan Number and Degree of Branching Cooperate to Regulate Cell Proliferation and Differentiation. Cell, 2007, 129, 123-134.	28.9	777