Mohamed H Sayegh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11072613/publications.pdf

Version: 2024-02-01

253 papers 26,931 citations

86 h-index 158 g-index

258 all docs

258 docs citations

258 times ranked

22351 citing authors

#	Article	IF	CITATIONS
1	Introduction: Conflict Nephrology Revisited. Seminars in Nephrology, 2020, 40, 338-340.	0.6	О
2	Sijilli: a mobile electronic health records system for refugees in low-resource settings. The Lancet Global Health, 2019, 7, e1168-e1169.	2.9	11
3	Accelerated Allograft Vasculopathy With Rituximab After Cardiac Transplantation. Journal of the American College of Cardiology, 2019, 74, 36-51.	1.2	37
4	Costimulation Blockade in Transplantation. Advances in Experimental Medicine and Biology, 2019, 1189, 267-312.	0.8	8
5	P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. Journal of Clinical Investigation, 2018, 128, 3490-3503.	3.9	31
6	Use of polyclonal/monoclonal antibody therapies in transplantation. Expert Opinion on Biological Therapy, 2017, 17, 339-352.	1.4	9
7	Divergent Function of Programmed Death-Ligand 1 in Donor Tissue versus Recipient Immune System in a Murine Model of Bronchiolitis Obliterans. American Journal of Pathology, 2017, 187, 1368-1379.	1.9	2
8	The Limits of Linked Suppression for Regulatory T Cells. Frontiers in Immunology, 2016, 7, 82.	2.2	5
9	Live Images of Donor Dendritic Cells Trafficking via CX3CR1 Pathway. Frontiers in Immunology, 2016, 7, 412.	2.2	5
10	Imaging cell biology in transplantation. Transplant International, 2016, 29, 1349-1351.	0.8	3
11	Cholesterol efflux capacity of high-density lipoprotein correlates with survival and allograft vasculopathy in cardiac transplant recipients. Journal of Heart and Lung Transplantation, 2016, 35, 1295-1302.	0.3	12
12	ABCB5 Identifies Immunoregulatory Dermal Cells. Cell Reports, 2015, 12, 1564-1574.	2.9	51
13	TIM4 Regulates the Anti-Islet Th2 Alloimmune Response. Cell Transplantation, 2015, 24, 1599-1614.	1.2	9
14	Interleukin-10+ Regulatory B Cells Arise Within Antigen-Experienced CD40+ B Cells to Maintain Tolerance to Islet Autoantigens. Diabetes, 2015, 64, 158-171.	0.3	80
15	Targeting CD28 to prevent transplant rejection. Expert Opinion on Therapeutic Targets, 2014, 18, 225-242.	1.5	8
16	Role of Podocyte B7-1 in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 1415-1429.	3.0	114
17	Blockade of the Programmed Death-1 (PD1) Pathway Undermines Potent Genetic Protection from Type 1 Diabetes. PLoS ONE, 2014, 9, e89561.	1.1	54
18	Calcineurin Inhibitors: 40 Years Later, Can't Live Without …. Journal of Immunology, 2013, 191, 5785-5791.	0.4	256

#	Article	IF	CITATIONS
19	Long-Term Heart Transplant Survival by Targeting the Ionotropic Purinergic Receptor P2X7. Circulation, 2013, 127, 463-475.	1.6	91
20	T-cell co-stimulatory blockade in transplantation: two steps forward one step back!. Expert Opinion on Biological Therapy, 2013, 13, 1557-1568.	1.4	23
21	Effect of the Purinergic Inhibitor Oxidized ATP in a Model of Islet Allograft Rejection. Diabetes, 2013, 62, 1665-1675.	0.3	73
22	CD160lg Fusion Protein Targets a Novel Costimulatory Pathway and Prolongs Allograft Survival. PLoS ONE, 2013, 8, e60391.	1.1	25
23	Immune Profile of Pediatric Renal Transplant Recipients following Alemtuzumab Induction. Journal of the American Society of Nephrology: JASN, 2012, 23, 174-182.	3.0	30
24	Inotuzumab Ozogamicin Murine Analog-Mediated B-Cell Depletion Reduces Anti-islet Allo- and Autoimmune Responses. Diabetes, 2012, 61, 155-165.	0.3	13
25	Intact <scp>B</scp> 7â€ <scp>H</scp> 3 signaling promotes allograft prolongation through preferential suppression of <scp>T</scp> h1 effector responses. European Journal of Immunology, 2012, 42, 2343-2353.	1.6	33
26	The Link between the PDL1 Costimulatory Pathway and Th17 in Fetomaternal Tolerance. Journal of Immunology, 2011, 187, 4530-4541.	0.4	145
27	Costimulatory pathways in transplantation. Seminars in Immunology, 2011, 23, 293-303.	2.7	80
28	Role of Nuclear Factor of Activated T Cell (NFAT) Transcription Factors in Skin and Vascularized Cardiac Allograft Rejection. Transplantation, 2011, 92, e26-e27.	0.5	7
29	Mesenchymal stem cells express serine protease inhibitor to evade the host immune response. Blood, 2011, 117, 1176-1183.	0.6	43
30	Anti-CD3 mAb treatment cures PDL1â^'/â^'.NOD mice of diabetes but precipitates fatal myocarditis. Clinical Immunology, 2011, 140, 47-53.	1.4	2
31	The Novel Role of SERPINB9 in Cytotoxic Protection of Human Mesenchymal Stem Cells. Journal of Immunology, 2011, 187, 2252-2260.	0.4	32
32	The Programmed Death-1 Ligand 1:B7-1 Pathway Restrains Diabetogenic Effector T Cells In Vivo. Journal of Immunology, 2011, 187, 1097-1105.	0.4	159
33	The Novel Costimulatory Programmed Death Ligand 1/B7.1 Pathway Is Functional in Inhibiting Alloimmune Responses In Vivo. Journal of Immunology, 2011, 187, 1113-1119.	0.4	115
34	T-cell co-stimulatory blockade in kidney transplantation: back to the bench. Kidney International Supplements, 2011, 1, 25-30.	4.6	4
35	Targeting the CXCR4–CXCL12 Axis Mobilizes Autologous Hematopoietic Stem Cells and Prolongs Islet Allograft Survival via Programmed Death Ligand 1. Journal of Immunology, 2011, 186, 121-131.	0.4	71
36	Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. Journal of Clinical Investigation, 2011, 121, 3645-3656.	3.9	416

3

#	Article	IF	Citations
37	A Novel Clinically Relevant Approach to Tip the Balance Toward Regulation in Stringent Transplant Model. Transplantation, 2010, 90, 260-269.	0.5	40
38	Transplantation Immunobiology. , 2010, , 477-490.		0
39	A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice. Diabetes, 2010, 59, 2253-2264.	0.3	62
40	Congenic Mesenchymal Stem Cell Therapy Reverses Hyperglycemia in Experimental Type 1 Diabetes. Diabetes, 2010, 59, 3139-3147.	0.3	139
41	A novel in vivo regulatory role of P-glycoprotein in alloimmunity. Biochemical and Biophysical Research Communications, 2010, 394, 646-652.	1.0	6
42	Immunomodulatory Function of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Type 1 Diabetes. Journal of Immunology, 2009, 183, 993-1004.	0.4	355
43	Targeting Tim-1 to overcome resistance to transplantation tolerance mediated by CD8 T17 cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10734-10739.	3.3	64
44	Immunosuppressive Drugs and Tregs. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1661-1669.	2.2	62
45	Clinical Transplantation Tolerance: A Myth No More, But…. American Journal of Kidney Diseases, 2009, 54, 1005-1011.	2.1	7
46	Costimulatory pathways in transplantation: challenges and new developments. Immunological Reviews, 2009, 229, 271-293.	2.8	189
47	Understanding How Tregs Are Regulated: Therapeutic Implications. Transplantation, 2009, 88, 1159-1160.	0.5	0
48	B cell-targeted therapies in autoimmunity: rationale and progress. F1000 Biology Reports, 2009, 1, 39.	4.0	13
49	Harnessing negative T-cell costimulatory pathways to promote engraftment. Transplant International, 2008, 21, 18-20.	0.8	1
50	Identification of cells initiating human melanomas. Nature, 2008, 451, 345-349.	13.7	1,327
51	Regulating rejection with cell therapy. Nature Biotechnology, 2008, 26, 191-192.	9.4	4
52	A pilot study on the immunological effects of oral administration of donor major histocompatibility complex class II peptides in renal transplant recipients. Clinical Transplantation, 2008, 22, 754-759.	0.8	6
53	Role of ICOS pathway in autoimmune and alloimmune responses in NOD mice. Clinical Immunology, 2008, 126, 140-147.	1.4	52
54	Immunomodulation by Mesenchymal Stem Cells. Diabetes, 2008, 57, 1759-1767.	0.3	445

#	Article	IF	Citations
55	Distinct Functions of Autoreactive Memory and Effector CD4+ T Cells in Experimental Autoimmune Encephalomyelitis. American Journal of Pathology, 2008, 173, 411-422.	1.9	59
56	A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. Journal of Experimental Medicine, 2008, 205, 3133-3144.	4.2	277
57	Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 ⁺ CD4 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9331-9336.	3.3	348
58	Critical Role of Donor Tissue Expression of Programmed Death Ligand-1 in Regulating Cardiac Allograft Rejection and Vasculopathy. Circulation, 2008, 117, 660-669.	1.6	89
59	Targeting CD22 Reprograms B-Cells and Reverses Autoimmune Diabetes. Diabetes, 2008, 57, 3013-3024.	0.3	126
60	Mechanisms Underlying Blockade of Allograft Acceptance by TLR Ligands. Journal of Immunology, 2008, 181, 1692-1699.	0.4	82
61	Negative T-cell costimulatory pathways: their role in regulating alloimmune responses. Current Opinion in Organ Transplantation, 2008, 13, 373-378.	0.8	17
62	The emerging role of T cell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model. Journal of Clinical Investigation, 2008, $118,742-751$.	3.9	93
63	Clinical Transplantation Tolerance: Many Rivers to Cross. Journal of Immunology, 2007, 178, 5419-5423.	0.4	69
64	A Novel Alloantigen-Specific CD8+PD1+ Regulatory T Cell Induced by ICOS-B7h Blockade In Vivo. Journal of Immunology, 2007, 179, 786-796.	0.4	41
65	Maternal Acceptance of the Fetus: True Human Tolerance. Journal of Immunology, 2007, 178, 3345-3351.	0.4	222
66	PDL1 Is Required for Peripheral Transplantation Tolerance and Protection from Chronic Allograft Rejection. Journal of Immunology, 2007, 179, 5204-5210.	0.4	176
67	Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function. Journal of Experimental Medicine, 2007, 204, 1691-1702.	4.2	117
68	Allograft rejection mediated by memory T cells is resistant to regulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19954-19959.	3.3	189
69	The arduous road to achieving an immunosuppression-free state in kidney transplant recipients. Nature Clinical Practice Nephrology, 2007, 3, 464-465.	2.0	4
70	Matrix adherence of endothelial cells attenuates immune reactivity: induction of hyporesponsiveness in allo―and xenogeneic models. FASEB Journal, 2007, 21, 1515-1526.	0.2	22
71	Induction of Robust Diabetes Resistance and Prevention of Recurrent Type 1 Diabetes Following Islet Transplantation by Gene Therapy. Journal of Immunology, 2007, 179, 6762-6769.	0.4	24
72	A Link between PDL1 and T Regulatory Cells in Fetomaternal Tolerance. Journal of Immunology, 2007, 179, 5211-5219.	0.4	136

#	Article	IF	CITATIONS
73	T cell costimulatory pathways in allograft rejection and tolerance: what's new?. Current Opinion in Organ Transplantation, 2007, 12, 17-22.	0.8	3
74	Clinical update: immunosuppression minimisation. Lancet, The, 2007, 369, 1676-1678.	6.3	31
75	New Reagents on the Horizon for Immune Tolerance. Annual Review of Medicine, 2007, 58, 329-346.	5.0	58
76	CD28: beyond just T-cell costimulation. Blood, 2007, 109, 2668-2669.	0.6	0
77	Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clinical Immunology, 2007, 125, 16-25.	1.4	111
78	Tissue expression of PD-L1 mediates peripheral T cell tolerance. Journal of Experimental Medicine, 2006, 203, 883-895.	4.2	1,042
79	Tolerance is the achievable â€~Holy Grail' in transplantation. Current Opinion in Organ Transplantation, 2006, 11, 24-29.	0.8	1
80	Does belatacept provide equivalent suppression of acute renal transplant rejection to ciclosporin?. Nature Clinical Practice Nephrology, 2006, 2, 134-135.	2.0	3
81	A Novel Mechanism of Action for Anti-Thymocyte Globulin: Induction of CD4+CD25+Foxp3+Regulatory T Cells. Journal of the American Society of Nephrology: JASN, 2006, 17, 2844-2853.	3.0	352
82	Role of CXC Chemokine Receptor 3 Pathway in Renal Ischemic Injury. Journal of the American Society of Nephrology: JASN, 2006, 17, 716-723.	3.0	72
83	Differential Role of Programmed Death-Ligand 1 and Programmed Death-Ligand 2 in Regulating the Susceptibility and Chronic Progression of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 176, 3480-3489.	0.4	122
84	Measuring T Cell Alloreactivity to Predict Kidney Transplant Outcomes: Are We There Yet?. Journal of the American Society of Nephrology: JASN, 2006, 17, 328-330.	3.0	9
85	Critical, but Conditional, Role of OX40 in Memory T Cell-Mediated Rejection. Journal of Immunology, 2006, 176, 1394-1401.	0.4	118
86	Specificity of CD4+CD25+ Regulatory T Cell Function in Alloimmunity. Journal of Immunology, 2006, 176, 329-334.	0.4	116
87	Accelerated Memory Cell Homeostasis during T Cell Depletion and Approaches to Overcome It. Journal of Immunology, 2006, 176, 4632-4639.	0.4	139
88	Novel Insights into the Mechanism of Action of FTY720 in a Transgenic Model of Allograft Rejection: Implications for Therapy of Chronic Rejection. Journal of Immunology, 2006, 176, 36-42.	0.4	34
89	Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. Journal of Experimental Medicine, 2006, 203, 2737-2747.	4.2	280
90	Costimulation couture: a designer approach to regulating autoimmunity. Journal of Clinical Investigation, 2006, 116, 2080-2083.	3.9	11

#	Article	IF	CITATIONS
91	T-Cell Costimulatory Pathways in Allograft Rejection and Tolerance. Transplantation, 2005, 80, 555-563.	0.5	108
92	Induced costimulatory molecule-B7h costimulatory pathway in alloimmune regulation. Current Opinion in Organ Transplantation, 2005, 10, 186-190.	0.8	0
93	Role of the ICOS-B7h Costimulatory Pathway in the Pathophysiology of Chronic Allograft Rejection. Transplantation, 2005, 79, 1045-1050.	0.5	26
94	Transplantation tolerance in pediatric recipients: Lessons and challenges. Pediatric Transplantation, 2005, 9, 17-27.	0.5	10
95	Mechanisms of Tolerance Induced by Donor-Specific Transfusion and ICOS-B7h Blockade in a Model of CD4+ T-Cell-Mediated Allograft Rejection. American Journal of Transplantation, 2005, 5, 31-39.	2.6	25
96	Indirect Recognition of MHC Class I Allopeptides Accelerates Lung Allograft Rejection in Miniature Swine. American Journal of Transplantation, 2005, 5, 1626-1634.	2.6	18
97	Role of the Programmed Death-1 Pathway in Regulation of Alloimmune Responses In Vivo. Journal of Immunology, 2005, 174, 3408-3415.	0.4	164
98	Modulation of surgical fibrosis by microbial zwitterionic polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16753-16758.	3.3	42
99	CD70 Signaling Is Critical for CD28-Independent CD8+T Cell-Mediated Alloimmune Responses In Vivo. Journal of Immunology, 2005, 174, 1357-1364.	0.4	88
100	Analysis of the Role of Negative T Cell Costimulatory Pathways in CD4 and CD8 T Cell-Mediated Alloimmune Responses In Vivo. Journal of Immunology, 2005, 174, 6648-6656.	0.4	139
101	Alloreactive T Cell Responses and Acute Rejection of Single Class II MHC-Disparate Heart Allografts Are under Strict Regulation by CD4+CD25+ T Cells. Journal of Immunology, 2005, 174, 3741-3748.	0.4	72
102	A critical role for the programmed death ligand 1 in fetomaternal tolerance. Journal of Experimental Medicine, 2005, 202, 231-237.	4.2	375
103	Requirements for induction and maintenance of peripheral tolerance in stringent allograft models. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13230-13235.	3.3	39
104	ABCB5-Mediated Doxorubicin Transport and Chemoresistance in Human Malignant Melanoma. Cancer Research, 2005, 65, 4320-4333.	0.4	537
105	Matrix Embedding Alters the Immune Response Against Endothelial Cells In Vitro and In Vivo. Circulation, 2005, 112, 189-95.	1.6	33
106	Transplantation 50 Years Later â€" Progress, Challenges, and Promises. New England Journal of Medicine, 2004, 351, 2761-2766.	13.9	364
107	Overview: Future Approaches to Renal Replacement and Regeneration. Journal of the American Society of Nephrology: JASN, 2004, 15, 1105-1105.	3.0	1
108	Defining Th1 and Th2 Immune Responses in a Reciprocal Cytokine Environment In Vivo. Journal of Immunology, 2004, 172, 4260-4265.	0.4	24

#	Article	IF	CITATIONS
109	Critical Role of OX40 in CD28 and CD154-Independent Rejection. Journal of Immunology, 2004, 172, 1691-1698.	0.4	99
110	Transplantation Tolerance., 2004, 146, 95-104.		3
111	Different Costimulatory and Growth Factor Requirements for CD4+and CD8+T Cell-Mediated Rejection. Journal of Immunology, 2004, 173, 214-221.	0.4	38
112	Mechanism of Action of Donor-Specific Transfusion in Inducing Tolerance: Role of Donor MHC Molecules, Donor Co-stimulatory Molecules, and Indirect Antigen Presentation. Journal of the American Society of Nephrology: JASN, 2004, 15, 2423-2428.	3.0	40
113	Regulation of Postsurgical Fibrosis by the Programmed Death-1 Inhibitory Pathway. Journal of Immunology, 2004, 172, 5774-5781.	0.4	24
114	Donor Antigen and Transplant Tolerance Strategies: It Takes Two to Tango!. Journal of the American Society of Nephrology: JASN, 2004, 15, 1101-1103.	3.0	7
115	Differential Role of CCR2 in Islet and Heart Allograft Rejection: Tissue Specificity of Chemokine/Chemokine Receptor Function In Vivo. Journal of Immunology, 2004, 172, 767-775.	0.4	74
116	Clinical transplantation tolerance: The promise and challenges. Kidney International, 2004, 65, 1560-1563.	2.6	19
117	Homeostatic proliferation is a barrier to transplantation tolerance. Nature Medicine, 2004, 10, 87-92.	15.2	388
118	Neural Stem/Progenitor Cells Express Costimulatory Molecules That Are Differentially Regulated by Inflammatory and Apoptotic Stimuli. American Journal of Pathology, 2004, 164, 1615-1625.	1.9	90
119	The Roles of the New Negative T Cell Costimulatory Pathways in Regulating Autoimmunity. Immunity, 2004, 20, 529-538.	6.6	202
120	Immunomodulatory functions of mesenchymal stem cells. Lancet, The, 2004, 363, 1411-1412.	6.3	81
121	Delayed graft function in kidney transplantation. Lancet, The, 2004, 364, 1814-1827.	6.3	828
122	TNP-470, an Angiogenesis Inhibitor, Attenuates the Development of Allograft Vasculopathy. Transplantation, 2004, 78, 1218-1221.	0.5	13
123	DEPLETING ANTI-CD4 MONOCLONAL ANTIBODY CURES NEW-ONSET DIABETES, PREVENTS RECURRENT AUTOIMMUNE DIABETES, AND DELAYS ALLOGRAFT REJECTION IN NONOBESE DIABETIC MICE1. Transplantation, 2004, 77, 990-997.	0.5	62
124	Allograft Rejection in a New Allospecific CD4+ TCR Transgenic Mouse. American Journal of Transplantation, 2003, 3, 381-389.	2.6	52
125	Interaction Between ICOS-B7RP1 and B7-CD28 Costimulatory Pathways in Alloimmune Responses In Vivo. American Journal of Transplantation, 2003, 3, 390-395.	2.6	32
126	Alternative T-Cell Costimulatory Pathways in Transplant Rejection and Tolerance Induction: Hierarchy or Redundancy?. American Journal of Transplantation, 2003, 3, 509-511.	2.6	18

#	Article	IF	Citations
127	Further Analysis of the T-Cell Subsets and Pathways of Murine Cardiac Allograft Rejection. American Journal of Transplantation, 2003, 3, 23-27.	2.6	39
128	New TCR Transgenic Model for Tracking Allospecific CD4 Tâ€Cell Activation and Tolerancein Vivo. American Journal of Transplantation, 2003, 3, 1242-1250.	2.6	31
129	Regulation by CD25+ lymphocytes of autoantigen-specific T-cell responses in Goodpasture's (anti-GBM) disease. Kidney International, 2003, 64, 1685-1694.	2.6	102
130	T-cell costimulatory pathways in allograft rejection and tolerance. Immunological Reviews, 2003, 196, 85-108.	2.8	202
131	The Programmed Death-1 (PD-1) Pathway Regulates Autoimmune Diabetes in Nonobese Diabetic (NOD) Mice. Journal of Experimental Medicine, 2003, 198, 63-69.	4.2	697
132	Favorably Tipping the Balance between Cytopathic and Regulatory T Cells to Create Transplantation Tolerance. Immunity, 2003, 19, 503-514.	6.6	245
133	Regulation of Progenitor Cell Fusion by ABCB5 P-glycoprotein, a Novel Human ATP-binding Cassette Transporter. Journal of Biological Chemistry, 2003, 278, 47156-47165.	1.6	209
134	Regulatory CD25+ T Cells in Human Kidney Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2003, 14, 1643-1651.	3.0	208
135	A Novel Mechanism for the Immunomodulatory Functions of Class II MHC–Derived Peptides. Journal of the American Society of Nephrology: JASN, 2003, 14, 1053-1065.	3.0	8
136	CD4+ T Cells Mediate Abscess Formation in Intra-abdominal Sepsis by an IL-17-Dependent Mechanism. Journal of Immunology, 2003, 170, 1958-1963.	0.4	216
137	Critical Role of the Programmed Death-1 (PD-1) Pathway in Regulation of Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2003, 198, 71-78.	4.2	461
138	Memory T Cells: A Hurdle to Immunologic Tolerance. Journal of the American Society of Nephrology: JASN, 2003, 14, 2402-2410.	3.0	155
139	The Role of the CD134-CD134 Ligand Costimulatory Pathway in Alloimmune Responses In Vivo. Journal of Immunology, 2003, 170, 2949-2955.	0.4	86
140	Allorecognition and Effector Pathways of Islet Allograft Rejection in Normal versus Nonobese Diabetic Mice. Journal of the American Society of Nephrology: JASN, 2003, 14, 2168-2175.	3.0	41
141	Cutting Edge: Transplantation Tolerance through Enhanced CTLA-4 Expression. Journal of Immunology, 2003, 171, 5673-5677.	0.4	71
142	Case 8-2003. New England Journal of Medicine, 2003, 348, 1033-1044.	13.9	13
143	Role of novel T-cell costimulatory pathways in transplantation. Current Opinion in Organ Transplantation, 2003, 8, 25-33.	0.8	0
144	CD45RB-targeting strategies for promoting long-term allograft survival and preventingchronic allograft vasculopathy1. Transplantation, 2003, 75, 1142-1146.	0.5	22

#	Article	IF	Citations
145	Proinflammatory functions of vascular endothelial growth factor in alloimmunity. Journal of Clinical Investigation, 2003, 112, 1655-1665.	3.9	203
146	The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. Journal of Clinical Investigation, 2003, 112, 234-243.	3.9	50
147	Regulatory functions of CD8+CD28– T cells in an autoimmune disease model. Journal of Clinical Investigation, 2003, 112, 1037-1048.	3.9	236
148	The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. Journal of Clinical Investigation, 2003, 112 , 234 - 243 .	3.9	114
149	The CD154-CD40 T Cell Costimulation Pathway Is Required for Host Sensitization of CD8+ T Cells by Skin Grafts Via Direct Antigen Presentation. Journal of Immunology, 2002, 169, 1270-1276.	0.4	39
150	Physiological Mechanisms of Regulating Alloimmunity: Cytokines, CTLA-4, CD25+ Cells, and the Alloreactive T Cell Clone Size. Journal of Immunology, 2002, 169, 3744-3751.	0.4	78
151	The Role of CC Chemokine Receptor 5 (CCR5) in Islet Allograft Rejection. Diabetes, 2002, 51, 2489-2495.	0.3	82
152	CD4+ T Cells Regulate Surgical and Postinfectious Adhesion Formation. Journal of Experimental Medicine, 2002, 195, 1471-1478.	4.2	87
153	A novel CD154 monoclonal antibody in acute and chronic rat vascularized cardiac allograft rejection1. Transplantation, 2002, 73, 1736-1742.	0.5	21
154	T-cell response to cardiac myosin persists in the absence of an alloimmune response in recipients with chronic cardiac allograft rejection1. Transplantation, 2002, 74, 1053-1057.	0.5	42
155	Mechanisms of targeting cd28 by a signaling monoclonal antibody in acute and chronic allograft rejection1. Transplantation, 2002, 73, 1310-1317.	0.5	34
156	THE CD154-CD40 COSTIMULATORY PATHWAY IN TRANSPLANTATION. Transplantation, 2002, 73, S36-S39.	0.5	83
157	New Insights Into the Interactions Between T-Cell Costimulatory Blockade and Conventional Immunosuppressive Drugs. Annals of Surgery, 2002, 236, 667-675.	2.1	84
158	Challenges for the translation of T cell costimulatory blockade therapies to the clinic. Expert Opinion on Biological Therapy, 2002, 2, 453-457.	1.4	4
159	The relative contribution of direct and indirect antigen recognition pathways to the alloresponse and graft rejection depends upon the nature of the transplant. Human Immunology, 2002, 63, 912-925.	1.2	58
160	Overcoming cardiac allograft vasculopathy (CAV) by inducing tolerance. Frontiers in Bioscience - Landmark, 2002, 7, e116.	3.0	7
161	Regulatory functions of alloreactive Th2 clones in human renal transplant recipients. Kidney International, 2002, 62, 627-631.	2.6	33
162	A rendezvous before rejection: Where do T cells meet transplant antigens?. Nature Medicine, 2002, 8, 220-222.	15.2	70

#	Article	IF	Citations
163	Th1 cytokines, programmed cell death, and alloreactive T cell clone size in transplant tolerance. Journal of Clinical Investigation, 2002, 109, 1471-1479.	3.9	64
164	Th1 cytokines, programmed cell death, and alloreactive T cell clone size in transplant tolerance. Journal of Clinical Investigation, 2002, 109, 1471-1479.	3.9	39
165	Enzyme-Linked Immunosorbent Spot Assay Analysis of Peripheral Blood Lymphocyte Reactivity to Donor HLA-DR Peptides. Journal of the American Society of Nephrology: JASN, 2002, 13, 252-259.	3.0	117
166	Anti-CD28 Monoclonal Antibody Therapy Prevents Chronic Rejection of Renal Allografts in Rats. Journal of the American Society of Nephrology: JASN, 2002, 13, 519-527.	3.0	47
167	The Role of Novel T Cell Costimulatory Pathways in Autoimmunity and Transplantation. Journal of the American Society of Nephrology: JASN, 2002, 13, 559-575.	3.0	141
168	The Role of Autoimmunity in Islet Allograft Destruction: Major Histocompatibility Complex Class II Matching Is Necessary for Autoimmune Destruction of Allogeneic Islet Transplants After T-Cell Costimulatory Blockade. Diabetes, 2002, 51, 3202-3210.	0.3	60
169	CD28-B7-Mediated T Cell Costimulation in Chronic Cardiac Allograft Rejection. American Journal of Pathology, 2001, 158, 977-986.	1.9	63
170	T cell costimulatory blockade as a novel immune intervention in autoimmune diseases. Clinics in Dermatology, 2001, 19, 586-591.	0.8	3
171	Targeting Signal 1 Through CD45RB Synergizes with CD40 Ligand Blockade and Promotes Long Term Engraftment and Tolerance in Stringent Transplant Models. Journal of Immunology, 2001, 166, 322-329.	0.4	90
172	CTLA-4 up-regulation plays a role in tolerance mediated by CD45. Nature Immunology, 2001, 2, 58-63.	7.0	113
173	Indirect Allorecognition of Mismatched Donor HLA Class II Peptides in Lung Transplant Recipients with Bronchiolitis Obliterans Syndrome. American Journal of Transplantation, 2001, 1, 228-235.	2.6	73
174	Membranous Lupus Nephritis in a Renal Allograft: Response to Mycophenolate Mofetil Therapy. American Journal of Transplantation, 2001, 1, 288-292.	2.6	21
175	Challenges to achieving clinical transplantation tolerance. Journal of Clinical Investigation, 2001, 108, 943-948.	3.9	101
176	Specific MDR1 P-Glycoprotein Blockade Inhibits Human Alloimmune T Cell Activation In Vitro. Journal of Immunology, 2001, 166, 2451-2459.	0.4	62
177	Quantifying the Frequency of Alloreactive T Cells In Vivo: New Answers to an Old Question. Journal of Immunology, 2001, 166, 973-981.	0.4	469
178	Peripheral Deletion After Bone Marrow Transplantation with Costimulatory Blockade Has Features of Both Activation-Induced Cell Death and Passive Cell Death. Journal of Immunology, 2001, 166, 2311-2316.	0.4	110
179	Rejection of Mouse Cardiac Allografts by Costimulation in <i>trans</i> . Journal of Immunology, 2001, 167, 1174-1178.	0.4	42
180	CTLA4lg-Induced Linked Regulation of Allogeneic T Cell Responses. Journal of Immunology, 2001, 166, 1572-1582.	0.4	29

#	Article	IF	Citations
181	CD28-independent Costimulation of T Cells in Alloimmune Responses. Journal of Immunology, 2001, 167, 140-146.	0.4	109
182	Tolerance and chronic rejection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 727-738.	1.8	36
183	Involvement of the direct and indirect pathways of allorecognition in tolerance induction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 639-647.	1.8	30
184	Cutting Edge: Recipient MHC Class II Expression Is Required to Achieve Long-Term Survival of Murine Cardiac Allografts After Costimulatory Blockade. Journal of Immunology, 2001, 167, 5522-5526.	0.4	123
185	CD28-independent induction of experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2001, 107, 575-583.	3.9	69
186	Regulatory functions of self-restricted MHC class II allopeptide-specific Th2 clones in vivo. Journal of Clinical Investigation, 2001, 107, 909-916.	3.9	89
187	Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2001, 108, 739-747.	3.9	168
188	Indirect Allorecognition of Donor Class I and II Major Histocompatibility Complex Peptides Promotes the Development of Transplant Vasculopathy. Journal of the American Society of Nephrology: JASN, 2001, 12, 2500-2506.	3.0	42
189	Hepatocyte Growth Factor Prevents the Development of Chronic Allograft Nephropathy in Rats. Journal of the American Society of Nephrology: JASN, 2001, 12, 1280-1292.	3.0	72
190	Tolerance: Is it time to Move to the Clinic?., 2001, , 293-313.		0
191	Immune Tolerance., 2001,, 73-90.		0
192	Novel Strategies Using MHC Peptides. , 2001, , 101-126.		0
193	Thymic Dendritic Cells Express Inducible Nitric Oxide Synthase and Generate Nitric Oxide in Response to Self- and Alloantigens. Journal of Immunology, 2000, 164, 4649-4658.	0.4	63
194	T-cell recognition of allograft target antigens. Current Opinion in Organ Transplantation, 2000, 5, 23-28.	0.8	9
195	The role of costimulatory molecules as targets for new immunosuppressives in transplantation. Current Opinion in Urology, 2000, 10, 57-62.	0.9	27
196	Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nature Medicine, 2000, 6, 464-469.	15.2	491
197	Blockade of CD28-B7, But Not CD40-CD154, Prevents Costimulation of Allogeneic Porcine and Xenogeneic Human Anti-Porcine T Cell Responses. Journal of Immunology, 2000, 164, 3434-3444.	0.4	45
198	Bacterial Pathogens Induce Abscess Formation by CD4 + T-Cell Activation via the CD28–B7-2 Costimulatory Pathway. Infection and Immunity, 2000, 68, 6650-6655.	1.0	44

#	Article	IF	CITATIONS
199	Intrathymic immunomodulation in sensitized rat recipients of cardiac allografts: requirements for allorecognition pathways. Journal of Heart and Lung Transplantation, 2000, 19, 566-575.	0.3	6
200	CTLA4-lg: a novel immunosuppressive agent. Expert Opinion on Investigational Drugs, 2000, 9, 2147-2157.	1.9	86
201	CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. Journal of Clinical Investigation, 2000, 105, 643-651.	3.9	158
202	The role of CD154-CD40 versus CD28-B7 costimulatory pathways in regulating allogeneic Th1 and Th2 responses in vivo. Journal of Clinical Investigation, 2000, 106, 63-72.	3.9	125
203	Avoidance of Cyclosporine in Renal Transplantation. Journal of the American Society of Nephrology: JASN, 2000, 11, 1903-1909.	3.0	67
204	Endothelial Cells Modify the Costimulatory Capacity of Transmigrating Leukocytes and Promote Cd28-Mediated Cd4+ T Cell Alloactivation. Journal of Experimental Medicine, 1999, 190, 555-566.	4.2	111
205	Transplantation tolerance: The concept and its applicability. Pediatric Transplantation, 1999, 3, 181-192.	0.5	41
206	Why do we reject a graft? Role of indirect allorecognition in graft rejection. Kidney International, 1999, 56, 1967-1979.	2.6	85
207	Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 1999, 96, 158-166.	1.1	38
208	Blocking Costimulatory Signals to Induce Transplantation Tolerance and Prevent Autoimmune Disease. International Reviews of Immunology, 1999, 18, 185-199.	1.5	22
209	Immunosuppressive strategies in transplantation. Lancet, The, 1999, 353, 1083-1091.	6.3	395
210	Regulatory T Cells Maintain Peripheral Tolerance to Islet Allografts Induced by Intrathymic Injection of MHC Class I Allopeptides. Cell Transplantation, 1999, 8, 375-381.	1.2	15
211	CELLULAR AND HUMORAL MECHANISMS OF VASCULARIZED ALLOGRAFT REJECTION INDUCED BY INDIRECT RECOGNITION OF DONOR MHC ALLOPEPTIDES1. Transplantation, 1999, 67, 1523-1532.	0.5	65
212	ANTI-CD154 OR CTLA4Ig OBVIATES THE NEED FOR THYMIC IRRADIATION IN A NON-MYELOABLATIVE CONDITIONING REGIMEN FOR THE INDUCTION OF MIXED HEMATOPOIETIC CHIMERISM AND TOLERANCE1. Transplantation, 1999, 68, 1348-1355.	0.5	108
213	Major histocompatibility complex–derived peptides as novel forms of immunosuppression. Current Opinion in Organ Transplantation, 1999, 4, 211-218.	0.8	5
214	Inhibition of allorecognition by a human class II MHC–derived peptide through the induction of apoptosis. Journal of Clinical Investigation, 1999, 103, 859-867.	3.9	32
215	Finally, CTLA4Ig graduates to the clinic. Journal of Clinical Investigation, 1999, 103, 1223-1225.	3.9	58
216	The Allocation of Cadaver Kidneys for Transplantation in the United States. Journal of the American Society of Nephrology: JASN, 1999, 10, 2237-2243.	3.0	26

#	Article	IF	Citations
217	Immunomodulatory Functions of Low-Molecular Weight Hyaluronate in an Acute Rat Renal Allograft Rejection Model. Journal of the American Society of Nephrology: JASN, 1999, 10, 1059-1066.	3.0	24
218	Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nature Medicine, 1998, 4, 1392-1396.	15.2	451
219	The Role of T-Cell Costimulatory Activation Pathways in Transplant Rejection. New England Journal of Medicine, 1998, 338, 1813-1821.	13.9	547
220	Extrathymic T Cell Deletion and Allogeneic Stem Cell Engraftment Induced with Costimulatory Blockade Is Followed by Central T Cell Tolerance. Journal of Experimental Medicine, 1998, 187, 2037-2044.	4.2	328
221	MECHANISMS OF INDIRECT ALLORECOGNITION. Transplantation, 1998, 65, 876-883.	0.5	44
222	BCL-XI AUGMENTS T CELL SURVIVAL IN THE ABSENCE OF COSTIMULATION AND BLOCKS IMMUNOSUPPRESSION WITH CTLA4IG Transplantation, 1998, 65, 79.	0.5	1
223	EFFECTS OF EXPLOSIVE BRAIN DEATH ON CYTOKINE ACTIVATION OF PERIPHERAL ORGANS IN THE RAT1. Transplantation, 1998, 65, 1533-1542.	0.5	373
224	COMPARATIVE STUDIES OF SPECIFIC ACQUIRED SYSTEMIC TOLERANCE INDUCED BY INTRATHYMIC INOCULATION OF A SINGLE SYNTHETIC WISTAR-FURTH (RT1u) ALLO-MHC CLASS I (RT1.AU) PEPTIDE OR WAG (RT1u)-DERIVED CLASS I PEPTIDE1. Transplantation, 1998, 66, 1059-1066.	0.5	38
225	Anaritide in Acute Tubular Necrosis. New England Journal of Medicine, 1997, 336, 828-834.	13.9	447
226	CD28-B7 blockade in organ dysfunction secondary to cold ischemia/reperfusion injury: Rapid Communication. Kidney International, 1997, 52, 1678-1684.	2.6	98
227	In VivoMechanisms of Acquired Thymic Tolerance. Cellular Immunology, 1997, 179, 165-173.	1.4	32
228	Peptide-mediated immunosuppression. Current Opinion in Immunology, 1997, 9, 669-675.	2.4	73
229	T-CELL COSTIMULATORY BLOCKADE IN EXPERIMENTAL CHRONIC CARDIAC ALLOGRAFT REJECTION. Transplantation, 1997, 63, 1053-1058.	0.5	56
230	SYNTHETIC MHC CLASS I PEPTIDE PROLONGS CARDIAC SURVIVAL AND ATTENUATES TRANSPLANT ARTERIOSCLEROSIS IN THE LEWIS???FISCHER 344 MODEL OF CHRONIC ALLOGRAFT REJECTION. Transplantation, 1997, 64, 14-19.	0.5	26
231	INDIRECT ALLORECOGNITION OF MAJOR HISTOCOMPATIBILITY COMPLEX ALLOPEPTIDES IN HUMAN RENAL TRANSPLANT RECIPIENTS WITH CHRONIC GRAFT DYSFUNCTION1. Transplantation, 1997, 64, 795-800.	0.5	268
232	CHRONIC BLOCKADE OF CD28-B7-MEDIATED T-CELL COSTIMULATION BY CTLA4lg REDUCES INTIMAL THICKENING IN MHC CLASS I AND II INCOMPATIBLE MOUSE HEART ALLOGRAFTS1,2. Transplantation, 1997, 64, 1641-1645.	0.5	52
233	DONOR ANTIGEN IS NECESSARY FOR THE PREVENTION OF CHRONIC REJECTION IN CTLA4IG-TREATED MURINE CARDIAC ALLOGRAFT RECIPIENTS1,2. Transplantation, 1997, 64, 1646-1650.	0.5	103
234	ROLE OF INDIRECT ALLORECOGNITION IN EXPERIMENTAL LATE ACUTE REJECTION1,2. Transplantation, 1997, 64, 1823-1828.	0.5	54

#	Article	IF	Citations
235	Mechanisms of Oral Tolerance by MHC Peptides. Annals of the New York Academy of Sciences, 1996, 778, 338-345.	1.8	24
236	Is the Administration of Dopamine Associated with Adverse or Favorable Outcomes in Acute Renal Failure?. American Journal of Medicine, 1996, 101, 49-53.	0.6	140
237	Why do we reject a graft? Mechanisms of recognition of transplantation antigens. Transplantation Reviews, 1996, 10, 150-159.	1.2	8
238	Role of Indirect Allorecognition in Allograft Rejection. International Reviews of Immunology, 1996, 13, 221-229.	1.5	146
239	THE EFFECTS OF NONDEPLETING CD4 TARGETED THERAPY IN PRESENSITIZED RAT RECIPIENTS OF CARDIAC ALLOGRAFTS1,2. Transplantation, 1996, 61, 804-811.	0.5	50
240	T CELL RECOGNITION OF XENO-MHC PEPTIDES DURING CONCORDANT XENOGRAFT REJECTION1. Transplantation, 1996, 61, 1133-1137.	0.5	32
241	MECHANISMS OF INDIRECT ALLORECOGNITION IN GRAFT REJECTION. Transplantation, 1996, 62, 705-710.	0.5	50
242	ACQUIRED SYSTEMIC TOLERANCE TO RAT CARDIAC ALLOGRAFTS INDUCED BY INTRATHYMIC INOCULATION OF SYNTHETIC POLYMORPHIC MHC CLASS I ALLOPEPTIDES1,2. Transplantation, 1996, 62, 1878-1882.	0.5	50
243	UPREGULATION OF CYTOKINES ASSOCIATED WITH MACROPHAGE ACTIVATION IN THE LEWIS-TO-F344 RAT TRANSPLANTATION MODEL OF CHRONIC CARDIAC REJECTION1,2. Transplantation, 1995, 59, 572-578.	0.5	133
244	THE INDIRECT PATHWAY OF ALLORECOGNITION. Transplantation, 1995, 59, 612-616.	0.5	71
245	Rat intestinal epithelial cells present major histocompatibility complex allopeptides to primed T cells. Gastroenterology, 1994, 107, 1537-1542.	0.6	40
246	MECHANISMS OF ACQUIRED THYMIC UNRESPONSIVENESS TO RENAL ALLOGRAFTS. Transplantation, 1994, 58, 125-132.	0.5	124
247	MECHANISMS OF ALLO-RECOGNITION. Transplantation, 1994, 57, 572-576.	0.5	87
248	MECHANISMS OF T CELL RECOGNITION OF ALLOANTIGEN. Transplantation, 1994, 57, 1295-1302.	0.5	181
249	Chronic Rejection in Experimental Cardiac Transplantation: Studies in the Lewis-F344 Model. Immunological Reviews, 1993, 134, 5-19.	2.8	96
250	THYMIC RECOGNITION OF CLASS II MAJOR HISTOCOMPATIBILITY COMPLEX ALLOPEPTIDES INDUCES DONOR-SPECIFIC UNRESPONSIVENESS TO RENAL ALLOGRAFTS. Transplantation, 1993, 56, 461-465.	0.5	133
251	ORAL, BUT NOT INTRAVENOUS, ALLOANTIGEN PREVENTS ACCELERATED ALLOGRAFT REJECTION BY SELECTIVE INTRAGRAFT TH2 CELL ACTIVATION. Transplantation, 1993, 55, 1112-1117.	0.5	114
252	Immunologic Tolerance to Renal Allografts after Bone Marrow Transplants from the Same Donors. Annals of Internal Medicine, 1991, 114, 954-955.	2.0	243

ARTICLE IF CITATIONS
253 Allorecognition Pathways., 0, , 12-20.