
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/110715/publications.pdf Version: 2024-02-01

KATE E LONES

#	Article	IF	CITATIONS
1	MAMMALS IN PORTUGAL : A data set of terrestrial, volant, and marine mammal occurrences in Portugal. Ecology, 2022, , e3654.	3.2	1
2	Spatiotemporal forecasting for dengue, chikungunya fever and Zika using machine learning and artificial expert committees based on meta-heuristics. Research on Biomedical Engineering, 2022, 38, 499-537.	2.2	2
3	Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India. PLoS Neglected Tropical Diseases, 2022, 16, e0010218.	3.0	1
4	Species-specific responses to land-use change in island insectivorous bats. Journal for Nature Conservation, 2022, 67, 126177.	1.8	9
5	Targeting Conservation Actions at Species Threat Response Thresholds. Trends in Ecology and Evolution, 2021, 36, 216-226.	8.7	7
6	Observer retention, site selection and population dynamics interact to bias abundance trends in bats. Journal of Applied Ecology, 2021, 58, 236-247.	4.0	9
7	COVIDâ€Clarity demands unification of health and environmental policy. Global Change Biology, 2021, 27, 1319-1321.	9.5	9
8	The species awareness index as a conservation culturomics metric for public biodiversity awareness. Conservation Biology, 2021, 35, 472-482.	4.7	14
9	Benefit of woodland and other natural environments for adolescents' cognition and mental health. Nature Sustainability, 2021, 4, 851-858.	23.7	40
10	Post <scp>COVIDâ€19</scp> : a solution scan of options for preventing future zoonotic epidemics. Biological Reviews, 2021, 96, 2694-2715.	10.4	40
11	A review exploring the overarching burden of Zika virus with emphasis on epidemiological case studies from Brazil. Environmental Science and Pollution Research, 2021, 28, 55952-55966.	5.3	9
12	Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning. Research, Society and Development, 2021, 10, e452101220804.	0.1	3
13	Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria. Nature Communications, 2021, 12, 5759.	12.8	30
14	80 questions for UK biological security. PLoS ONE, 2021, 16, e0241190.	2.5	8
15	Shazam for bats: Internet of Things for continuous realâ€ŧime biodiversity monitoring. IET Smart Cities, 2021, 3, 171-183.	3.1	12
16	Georgina Mace (1953–2020). Science, 2020, 370, 915-915.	12.6	0
17	Ecosystem perspectives are needed to manage zoonotic risks in a changing climate. BMJ, The, 2020, 371, m3389.	6.0	55
18	Accounting for natural capital has cross-cutting relevance for UK public sector decision-making. Ecosystem Services, 2020, 44, 101127.	5.4	7

#	Article	IF	CITATIONS
19	Zoonotic host diversity increases in human-dominated ecosystems. Nature, 2020, 584, 398-402.	27.8	475
20	The Relative Role of Climate Variation and Control Interventions on Malaria Elimination Efforts in El Oro, Ecuador: A Modeling Study. Frontiers in Environmental Science, 2020, 8, .	3.3	9
21	Interactions Between a Large Marine Protected Area, Pelagic Tuna and Associated Fisheries. Frontiers in Marine Science, 2020, 7, .	2.5	19
22	Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nature Communications, 2019, 10, 4531.	12.8	63
23	Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet, The, 2019, 394, 1056-1112.	13.7	240
24	The effect of global change on mosquito-borne disease. Lancet Infectious Diseases, The, 2019, 19, e302-e312.	9.1	282
25	Spatial and taxonomic biases in bat records: Drivers and conservation implications in a megadiverse country. Ecology and Evolution, 2019, 9, 14130-14141.	1.9	5
26	Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environmental Science and Policy, 2019, 93, 181-188.	4.9	98
27	CityNet—Deep learning tools for urban ecoacoustic assessment. Methods in Ecology and Evolution, 2019, 10, 186-197.	5.2	39
28	Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology and Evolution, 2019, 10, 169-185.	5.2	302
29	Bat echolocation call identification for biodiversity monitoring: a probabilistic approach. Journal of the Royal Statistical Society Series C: Applied Statistics, 2018, 67, 165-183.	1.0	11
30	Forecasting the combined effects of climate and land use change on Mexican bats. Diversity and Distributions, 2018, 24, 363-374.	4.1	38
31	Ben Collen (1978–2018). Nature Ecology and Evolution, 2018, 2, 1199-1200.	7.8	0
32	Bat detective—Deep learning tools for bat acoustic signal detection. PLoS Computational Biology, 2018, 14, e1005995.	3.2	128
33	Integrative modelling for One Health: pattern, process and participation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160164.	4.0	43
34	Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160165.	4.0	46
35	Understanding the cryptic nature of Lassa fever in West Africa. Pathogens and Global Health, 2017, 111, 276-288.	2.3	67
36	Biases of acoustic indices measuring biodiversity in urban areas. Ecological Indicators, 2017, 83, 169-177.	6.3	107

#	Article	IF	CITATIONS
37	Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology and Evolution, 2017, 1, 1889-1895.	7.8	82
38	Engaging research with policy and action: what are the challenges of responding to zoonotic disease in Africa?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160172.	4.0	32
39	The Global Distribution and Drivers of Alien Bird Species Richness. PLoS Biology, 2017, 15, e2000942.	5.6	126
40	Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data. PLoS ONE, 2017, 12, e0187602.	2.5	36
41	Environmentalâ€mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods in Ecology and Evolution, 2016, 7, 646-655.	5.2	60
42	A global analysis of the determinants of alien geographical range size in birds. Global Ecology and Biogeography, 2016, 25, 1346-1355.	5.8	43
43	Quantifying Global Drivers of Zoonotic Bat Viruses: A Process-Based Perspective. American Naturalist, 2016, 187, E53-E64.	2.1	56
44	Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design. Methods in Ecology and Evolution, 2016, 7, 1082-1091.	5.2	51
45	A generalised random encounter model for estimating animal density with remote sensor data. Methods in Ecology and Evolution, 2015, 6, 500-509.	5.2	42
46	Putting the Scientist in the Loop Accelerating Scientific Progress with Interactive Machine Learning. , 2014, , .		11
47	Colony size predicts division of labour in attine ants. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141411.	2.6	69
48	Challenges of Using Bioacoustics to Globally Monitor Bats. , 2013, , 479-499.		35
49	Quantifying Trends in Disease Impact to Produce a Consistent and Reproducible Definition of an Emerging Infectious Disease. PLoS ONE, 2013, 8, e69951.	2.5	19
50	What is macroecology?. Biology Letters, 2012, 8, 904-906.	2.3	47
51	A continentalâ€scale tool for acoustic identification of <scp>E</scp> uropean bats. Journal of Applied Ecology, 2012, 49, 1064-1074.	4.0	144
52	A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2881-2892.	4.0	156
53	Identifying Cinderella species: uncovering mammals with conservation flagship appeal. Conservation Letters, 2012, 5, 205-212.	5.7	133
54	Can unified theories of biodiversity explain mammalian macroecological patterns?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2554-2563.	4.0	7

#	Article	IF	CITATIONS
55	Ecology and evolution of mammalian biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2451-2461.	4.0	61
56	Entertainment Value: Should the Media Pay for Nature Conservation?. Science, 2011, 334, 1351-1352.	12.6	14
57	Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468, 647-652.	27.8	1,481
58	Understanding the evolutionary origin and diversification of bat echolocation calls. Handbook of Behavioral Neuroscience, 2010, , 37-47.	0.7	11
59	PanTHERIA: a speciesâ€level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 2009, 90, 2648-2648.	3.2	1,322
60	Biodiversity Conservation and the Millennium Development Goals. Science, 2009, 325, 1502-1503.	12.6	216
61	Forecasting decline in ecosystem services under realistic scenarios of extinction. , 2009, , 60-77.		15
62	Global trends in emerging infectious diseases. Nature, 2008, 451, 990-993.	27.8	5,859
63	Phylogenetic trees and the future of mammalian biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11556-11563.	7.1	131
64	The predictability of extinction: biological and external correlates of decline in mammals. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1441-1448.	2.6	321
65	The Fastâ€Slow Continuum in Mammalian Life History: An Empirical Reevaluation. American Naturalist, 2007, 169, 748-757.	2.1	343
66	The delayed rise of present-day mammals. Nature, 2007, 446, 507-512.	27.8	1,832
67	Grenyer et al. reply. Nature, 2007, 450, E20-E20.	27.8	3
68	Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography, 2007, 16, 496-509.	5.8	178
69	Environmental predictors of global parrot (Aves: Psittaciformes) species richness and phylogenetic diversity. Global Ecology and Biogeography, 2007, 16, 220-233.	5.8	48
70	Infectious Diseases and Extinction Risk in Wild Mammals. Conservation Biology, 2007, 21, 1269-1279.	4.7	258
71	Sexual size dimorphism in mammals. , 2007, , 16-26.		152
72	Mating system and brain size in bats. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 719-724.	2.6	151

#	Article	IF	CITATIONS
73	Global distribution and conservation of rare and threatened vertebrates. Nature, 2006, 444, 93-96.	27.8	462
74	BATS, CLOCKS, AND ROCKS: DIVERSIFICATION PATTERNS IN CHIROPTERA. Evolution; International Journal of Organic Evolution, 2005, 59, 2243-2255.	2.3	135
75	Multiple Causes of High Extinction Risk in Large Mammal Species. Science, 2005, 309, 1239-1241.	12.6	1,035
76	Correlates of Species Richness in Mammals: Body Size, Life History, and Ecology. American Naturalist, 2005, 165, 600-607.	2.1	89
77	BATS, CLOCKS, AND ROCKS: DIVERSIFICATION PATTERNS IN CHIROPTERA. Evolution; International Journal of Organic Evolution, 2005, 59, 2243.	2.3	5
78	Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution; International Journal of Organic Evolution, 2005, 59, 2243-55.	2.3	42
79	Supertrees. Computational Biology, 2004, , 439-460.	0.2	17
80	Influences on the transport and establishment of exotic bird species: an analysis of the parrots (Psittaciformes) of the world. Global Change Biology, 2004, 10, 417-426.	9.5	125
81	Mistakes in the analysis of exotic species establishment: source pool designation and correlates of introduction success among parrots (Aves: Psittaciformes) of the world. Journal of Biogeography, 2004, 31, 277-284.	3.0	61
82	The influence of spatial resolution on macroecological patterns of range size variation: a case study using parrots (Aves: Psittaciformes) of the world. Journal of Biogeography, 2004, 31, 285-293.	3.0	31
83	Affording Larger Brains: Testing Hypotheses of Mammalian Brain Evolution on Bats. American Naturalist, 2004, 164, E20-E31.	2.1	74
84	Parasites and the Evolutionary Diversification of Primate Clades. American Naturalist, 2004, 164, S90-S103.	2.1	102
85	Similarity of Mammalian Body Size across the Taxonomic Hierarchy and across Space and Time. American Naturalist, 2004, 163, 672-691.	2.1	173
86	Garbage in, Garbage out. Computational Biology, 2004, , 267-280.	0.2	63
87	BODY MASS OF LATE QUATERNARY MAMMALS. Ecology, 2003, 84, 3403-3403.	3.2	393
88	Comparative Tests of Parasite Species Richness in Primates. American Naturalist, 2003, 162, 597-614.	2.1	315
89	Biological Correlates of Extinction Risk in Bats. American Naturalist, 2003, 161, 601-614.	2.1	305
90	Social Organization and Parasite Risk in Mammals: Integrating Theory and Empirical Studies. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 517-547.	8.3	625

#	Article	IF	CITATIONS
91	Supertrees Are a Necessary Not-So-Evil: A Comment on Gatesy et al Systematic Biology, 2003, 52, 724-729.	5.6	34
92	The Functions of Laryngeal Air Sacs in Primates: A New Hypothesis. Folia Primatologica, 2002, 73, 70-94.	0.7	120
93	A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 2002, 77, 223-259.	10.4	322
94	Short-term impacts of extreme environmental disturbance on the bats of Puerto Rico. Animal Conservation, 2001, 4, 59-66.	2.9	56
95	Is the bat os penis sexually selected?. Behavioral Ecology and Sociobiology, 2001, 50, 450-460.	1.4	34
96	Age and area revisited: identifying global patterns and implications for conservation. , 2001, , 141-165.		23
97	Extinction. BioEssays, 2000, 22, 1123-1133.	2.5	156
98	Primate life histories. Evolutionary Anthropology, 1998, 6, 54-63.	3.4	109
99	An optimum body size for mammals? Comparative evidence from bats. Functional Ecology, 1997, 11, 751-756.	3.6	138
100	Distribution and population densities of seven species of bat in northern England. Journal of Zoology, 1996, 240, 788-798.	1.7	12