List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1107148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lung transplant recipients with idiopathic pulmonary fibrosis have impaired alloreactive immune responses. Journal of Heart and Lung Transplantation, 2022, 41, 641-653.	0.6	11
2	Anti-HLA-A2-CAR Tregs prolong vascularized mouse heterotopic heart allograft survival. American Journal of Transplantation, 2022, 22, 2237-2245.	4.7	22
3	Interleukin-6 blockade with tocilizumab increases Tregs and reduces T effector cytokines in renal graft inflammation: A randomized controlled trial. American Journal of Transplantation, 2021, 21, 2543-2554.	4.7	34
4	The CD28-Transmembrane Domain Mediates Chimeric Antigen Receptor Heterodimerization With CD28. Frontiers in Immunology, 2021, 12, 639818.	4.8	60
5	A Comparison of Ex Vivo Expanded Human Regulatory T Cells Using Allogeneic Stimulated B Cells or Monocyte-Derived Dendritic Cells. Frontiers in Immunology, 2021, 12, 679675.	4.8	7
6	A human mutation in STAT3 promotes type 1 diabetes through a defect in CD8+ T cell tolerance. Journal of Experimental Medicine, 2021, 218, .	8.5	32
7	The Role of Regulatory T Cells in Pulmonary Arterial Hypertension. Frontiers in Immunology, 2021, 12, 684657.	4.8	27
8	Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Reports, 2021, 36, 109538.	6.4	41
9	The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight, 2021, 6, .	5.0	91
10	Precision Engineering of an Anti-HLA-A2 Chimeric Antigen Receptor in Regulatory T Cells for Transplant Immune Tolerance. Frontiers in Immunology, 2021, 12, 686439.	4.8	37
11	Polyclonal Regulatory T Cell Manufacturing Under cGMP: A Decade of Experience. Frontiers in Immunology, 2021, 12, 744763.	4.8	10
12	IL-6 and TNFα Drive Extensive Proliferation of Human Tregs Without Compromising Their Lineage Stability or Function. Frontiers in Immunology, 2021, 12, 783282.	4.8	25
13	Solving the Puzzle of Immune Tolerance for β-Cell Replacement Therapy for Type 1 Diabetes. Cell Stem Cell, 2020, 27, 505-507.	11.1	11
14	CAR-Tregs as a Strategy for Inducing Graft Tolerance. Current Transplantation Reports, 2020, 7, 205-214.	2.0	13
15	Novel In Situ Hybridization and Multiplex Immunofluorescence Technology Combined With Whole-slide Digital Image Analysis in Kidney Transplantation. Journal of Histochemistry and Cytochemistry, 2020, 68, 445-459.	2.5	7
16	Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet, The, 2020, 395, 1627-1639.	13.7	266
17	Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nature Immunology, 2020, 21, 1456-1466.	14.5	57
18	Supporting Survival of Transplanted Stemâ€Cellâ€Derived Insulinâ€Producing Cells in an Encapsulation Device Augmented with Controlled Release of Amino Acids. Advanced Biology, 2019, 3, 1900086.	3.0	14

#	Article	IF	CITATIONS
19	Next-generation regulatory T cell therapy. Nature Reviews Drug Discovery, 2019, 18, 749-769.	46.4	311
20	NextGen cell-based immunotherapies in cancer and other immune disorders. Current Opinion in Immunology, 2019, 59, 79-87.	5.5	15
21	NKC2C Natural Killer Cells in Bronchoalveolar Lavage Are Associated With Cytomegalovirus Viremia and Poor Outcomes in Lung Allograft Recipients. Transplantation, 2019, 103, 493-501.	1.0	30
22	Adoptive Treg Cell Therapy in a Patient With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2019, 71, 431-440.	5.6	103
23	Suppressed calcineurin-dependent gene expression identifies lung allograft recipients at increased risk of infection. American Journal of Transplantation, 2018, 18, 2043-2049.	4.7	7
24	Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Science Translational Medicine, 2018, 10, .	12.4	98
25	Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5265-5270.	7.1	64
26	SP729CLINICAL AND IMMUNOLOGIC PREDICTORS OF OUTCOME WITH A NOVEL BELATACEPT REGIMEN. Nephrology Dialysis Transplantation, 2018, 33, i592-i592.	0.7	0
27	Early expansion of donor-specific Tregs in tolerant kidney transplant recipients. JCl Insight, 2018, 3, .	5.0	54
28	Prevascularization of the Subcutaneous Space Improves Survival of Transplanted Mouse Islets. Transplantation, 2018, 102, S372.	1.0	3
29	Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. Journal of Allergy and Clinical Immunology, 2018, 142, 1710-1718.	2.9	124
30	Islet encapsulation therapy — racing towards the finish line?. Nature Reviews Endocrinology, 2018, 14, 630-632.	9.6	21
31	T _{reg} cells—the next frontier of cell therapy. Science, 2018, 362, 154-155.	12.6	124
32	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	1.0	72
33	Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell, 2018, 22, 810-823.	11.1	189
34	Generating Antigen-Specific Regulatory T Cells in the Fast Lane. American Journal of Transplantation, 2017, 17, 851-853.	4.7	6
35	Glucose-Stimulated Insulin Response of Silicon Nanopore-Immunoprotected Islets under Convective Transport. ACS Biomaterials Science and Engineering, 2017, 3, 1051-1061.	5.2	5
36	Cutting Edge: Origins, Recruitment, and Regulation of CD11c+ Cells in Inflamed Islets of Autoimmune Diabetes Mice. Journal of Immunology, 2017, 199, 27-32.	0.8	24

#	Article	IF	CITATIONS
37	Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes, 2017, 66, 722-734.	0.6	154
38	Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy. ACS Nano, 2017, 11, 7747-7757.	14.6	71
39	Mitigating Ischemic Injury of Stem Cell-Derived Insulin-Producing Cells after Transplant. Stem Cell Reports, 2017, 9, 807-819.	4.8	41
40	Expansion, Function and Clonotypic Analysis of Human Alloreactive Treg Stimulated With Different Dendritic Cell Populations or CD40L-Stimulated B Cells. Transplantation, 2017, 101, S8.	1.0	0
41	Transplant trials with Tregs: perils and promises. Journal of Clinical Investigation, 2017, 127, 2505-2512.	8.2	139
42	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	4.8	43
43	Regulatory T Cell Therapy in Transplantation. , 2017, , 303-318.		0
44	Virtual Global Transplant Laboratory Standard Operating Procedures for Blood Collection, PBMC Isolation, and Storage. Transplantation Direct, 2016, 2, e101.	1.6	47
45	Assessment of Immune Isolation of Allogeneic Mouse Pancreatic Progenitor Cells by a Macroencapsulation Device. Transplantation, 2016, 100, 1211-1218.	1.0	19
46	Donor-Reactive Regulatory T Cell Frequency Increases During Acute Cellular Rejection of Lung Allografts. Transplantation, 2016, 100, 2090-2098.	1.0	15
47	Impact of Immune-Modulatory Drugs on Regulatory T Cell. Transplantation, 2016, 100, 2288-2300.	1.0	99
48	Heightened Immune Activation in Fetuses with Gastroschisis May Be Blocked by Targeting IL-5. Journal of Immunology, 2016, 196, 4957-4966.	0.8	16
49	Restoring Regulatory T Cells in Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 110.	4.2	35
50	Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport. Scientific Reports, 2016, 6, 23679.	3.3	40
51	Approaching a cure for type 1 diabetes. Nature Medicine, 2016, 22, 236-237.	30.7	4
52	Manipulating IL-2 and IL-2R in autoimmune diseases and transplantation. Immunotherapy, 2015, 7, 1231-1234.	2.0	3
53	Therapeutic Window of Interleukin-2 for Autoimmune Diseases. Diabetes, 2015, 64, 1912-1913.	0.6	24
54	Antigen Recognition in the Islets Changes with Progression of Autoimmune Islet Infiltration. Journal of Immunology, 2015, 194, 522-530.	0.8	56

#	Article	IF	CITATIONS
55	Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices. ACS Nano, 2015, 9, 5675-5682.	14.6	71
56	Immunotherapy: Making the case for precision medicine. Science Translational Medicine, 2015, 7, 280ed3.	12.4	18
5 7	Therapeutic Regulatory T Cells Subvert Effector T Cell Function in Inflamed Islets To Halt Autoimmune Diabetes. Journal of Immunology, 2015, 194, 3147-3155.	0.8	25
58	Targeting Treg signaling for the treatment of autoimmune diseases. Current Opinion in Immunology, 2015, 37, 11-20.	5.5	79
59	Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine, 2015, 7, 315ra189.	12.4	767
60	Increased maternal T cell microchimerism in the allogeneic fetus during LPS-induced preterm labor in mice. Chimerism, 2014, 5, 68-74.	0.7	18
61	Fetal Intervention Increases Maternal T Cell Awareness of the Foreign Conceptus and Can Lead to Immune-Mediated Fetal Demise. Journal of Immunology, 2014, 192, 1938-1945.	0.8	38
62	Interpretation of transplant biopsies and immune responses following Treg cell therapy. Current Opinion in Organ Transplantation, 2014, 19, 616-620.	1.6	7
63	Regulatory T-Cell Therapy in Transplantation: Moving to the Clinic. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015552-a015552.	6.2	190
64	Direct and indirect antigen presentation lead to deletion of donor-specific T cells after in utero hematopoietic cell transplantation in mice. Blood, 2013, 121, 4595-4602.	1.4	41
65	Regulatory T-cell therapy for transplantation. Current Opinion in Organ Transplantation, 2012, 17, 349-354.	1.6	114
66	Altered balance between effector T cells and FOXP3 ⁺ HELIOS ⁺ regulatory T cells after thymoglobulin induction in kidney transplant recipients. Transplant International, 2012, 25, 1257-1267.	1.6	38
67	CD4+Foxp3+ regulatory T cell therapy in transplantation. Journal of Molecular Cell Biology, 2012, 4, 11-21.	3.3	148
68	IRE1α Induces Thioredoxin-Interacting Protein to Activate the NLRP3 Inflammasome and Promote Programmed Cell Death under Irremediable ER Stress. Cell Metabolism, 2012, 16, 250-264.	16.2	707
69	B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E823-32.	7.1	69
70	Requirements for Prolongation of Allograft Survival with Regulatory T Cell Infusion in Lymphosufficient Hosts. Journal of Surgical Research, 2011, 169, e69-e75.	1.6	41
71	The maternal immune response inhibits the success of in utero hematopoietic cell transplantation. Chimerism, 2011, 2, 55-57.	0.7	21
72	Anti-CD3 Therapy Promotes Tolerance by Selectively Depleting Pathogenic Cells while Preserving Regulatory T Cells. Journal of Immunology, 2011, 187, 2015-2022.	0.8	150

#	Article	IF	CITATIONS
73	Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. Journal of Clinical Investigation, 2011, 121, 582-592.	8.2	123
74	Prevention of Diabetes by FTY720-Mediated Stabilization of Peri-Islet Tertiary Lymphoid Organs. Diabetes, 2010, 59, 1461-1468.	0.6	69
75	IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. Journal of Experimental Medicine, 2010, 207, 1871-1878.	8.5	368
76	Amplification of Autoimmune Response through Induction of Dendritic Cell Maturation in Inflamed Tissues. Journal of Immunology, 2009, 182, 2590-2600.	0.8	66
77	Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nature Immunology, 2009, 10, 1185-1192.	14.5	659
78	The Maternal Immune Response to in Utero Hematopoietic Stem Cell Transplantation Blood, 2009, 114, 64-64.	1.4	0
79	T Regulatory Cells in Autoimmune Diabetes: Past Challenges, Future Prospects. Journal of Clinical Immunology, 2008, 28, 677-684.	3.8	102
80	The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunology, 2008, 9, 239-244.	14.5	880
81	Central Role of Defective Interleukin-2 Production in the Triggering of Islet Autoimmune Destruction. Immunity, 2008, 28, 687-697.	14.3	646
82	Response: Regulating Treg Cells at Sites of Inflammation. Immunity, 2008, 29, 512.	14.3	1
83	Spontaneous Development of a Pancreatic Exocrine Disease in CD28-Deficient NOD Mice. Journal of Immunology, 2008, 180, 7793-7803.	0.8	44
84	Regulatory T Cell Control of Autoimmune Diabetes and Their Potential Therapeutic Application. , 2008, , 199-230.		0
85	Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature, 2007, 449, 361-365.	27.8	463
86	Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clinical Immunology, 2007, 125, 16-25.	3.2	111
87	Antigen-specific regulatory T cells—Ex vivo expansion and therapeutic potential. Seminars in Immunology, 2006, 18, 103-110.	5.6	111
88	Regulatory T cells and their role in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2006, 13, 319-324.	0.6	1
89	Regulatory T-cell physiology and application to treat autoimmunity Immunological Reviews, 2006, 212, 217-237.	6.0	212
90	Plasmacytoid DCs and Treg cells: casual acquaintance or monogamous relationship?. Nature Immunology, 2006, 7, 551-553.	14.5	43

#	Article	IF	CITATIONS
91	Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunology, 2006, 7, 83-92.	14.5	718
92	Imaging the function of regulatory T cells in vivo. Current Opinion in Immunology, 2006, 18, 496-502.	5.5	36
93	Ex Vivo-Expanded CD4+CD25+ Immunoregulatory T Cells Prevent Graft-versus-Host-Disease by Inhibiting Activation/Differentiation of Pathogenic T Cells. Journal of Immunology, 2006, 176, 1266-1273.	0.8	127
94	Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. Journal of Experimental Medicine, 2006, 203, 2737-2747.	8.5	280
95	Suppression of Disease in New Zealand Black/New Zealand White Lupus-Prone Mice by Adoptive Transfer of Ex Vivo Expanded Regulatory T Cells. Journal of Immunology, 2006, 177, 1451-1459.	0.8	231
96	How do CD4+CD25+ regulatory T cells control autoimmunity?. Current Opinion in Immunology, 2005, 17, 638-642.	5.5	221
97	Expansion of Functional Endogenous Antigen-Specific CD4+CD25+ Regulatory T Cells from Nonobese Diabetic Mice. Journal of Immunology, 2005, 175, 3053-3059.	0.8	232
98	Therapeutic vaccination using CD4 ⁺ CD25 ⁺ antigen-specific regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14622-14626.	7.1	143
99	Distinct roles of CTLA-4 and TGF-? in CD4+CD25+ regulatory T?cell function. European Journal of Immunology, 2004, 34, 2996-3005.	2.9	361
100	In Vitro–expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes. Journal of Experimental Medicine, 2004, 199, 1455-1465.	8.5	1,082
101	Notch 1 Signaling Regulates Peripheral T Cell Activation. Immunity, 2004, 20, 407-415.	14.3	146
102	CTLA-4 regulates the requirement for cytokine-induced signals in TH2 lineage commitment. Nature Immunology, 2003, 4, 182-188.	14.5	88
103	Cutting Edge: CD28 Controls Peripheral Homeostasis of CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2003, 171, 3348-3352.	0.8	607
104	CD28/B7 Regulation of Anti-CD3-Mediated Immunosuppression In Vivo. Journal of Immunology, 2003, 170, 1510-1516.	0.8	36
105	The Src Family Kinase Fyn Mediates Signals Induced by TCR Antagonists. Journal of Immunology, 2002, 168, 4480-4487.	0.8	24
106	ERM-Dependent Movement of CD43 Defines a Novel Protein Complex Distal to the Immunological Synapse. Immunity, 2001, 15, 739-750.	14.3	239
107	Development and applications of surface-linked single chain antibodies against T-cell antigens. Journal of Immunological Methods, 2001, 248, 77-90.	1.4	25
108	Ex vivo model of leukocyte migration into herpes simplex virus-infected mouse corneas. Journal of Leukocyte Biology, 1996, 60, 167-173.	3.3	27

#	Article	IF	CITATIONS
109	Involvement of LFA-1 and ICAM-1 in the herpetic disease resulting from HSV-1 corneal infection. Current Eye Research, 1995, 14, 55-62.	1.5	15