
Xiaoming Bian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11070406/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Frontiers in Physiology, 2017, 8, 487.	2.8	184
2	The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 2017, 12, e0178426.	2.5	175
3	Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways. Chemical Research in Toxicology, 2017, 30, 996-1005.	3.3	141
4	Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 2017, 107, 530-539.	3.6	129
5	The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicological Sciences, 2017, 160, 193-204.	3.1	101
6	Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environmental Health Perspectives, 2017, 125, 198-206.	6.0	96
7	Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules, 2018, 23, 367.	3.8	75
8	Nicotine Alters the Gut Microbiome and Metabolites of Gut–Brain Interactions in a Sex-Specific Manner. Chemical Research in Toxicology, 2017, 30, 2110-2119.	3.3	66
9	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics, 2020, 8, 19.	3.7	66
10	Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome. Chemical Research in Toxicology, 2016, 29, 949-951.	3.3	63
11	Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicology and Applied Pharmacology, 2017, 331, 142-153.	2.8	54
12	Characterization of the Functional Changes in Mouse Gut Microbiome Associated with Increased <i>Akkermansia muciniphila</i> Population Modulated by Dietary Black Raspberries. ACS Omega, 2018, 3, 10927-10937.	3.5	49
13	Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes. BMC Pharmacology & Toxicology, 2017, 18, 46.	2.4	37
14	Editor's Highlight: Organophosphate Diazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicological Sciences, 2017, 157, 354-364.	3.1	33
15	The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicology Letters, 2018, 283, 52-57.	0.8	28
16	The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus. Communications Biology, 2020, 3, 2.	4.4	26
17	Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Scientific Reports, 2019, 9, 4363.	3.3	22
18	Metabolite Profiling of the Gut Microbiome in Mice with Dietary Administration of Black Raspberries. ACS Omega, 2020, 5, 1318-1325.	3.5	10

XIAOMING BIAN

#	Article	IF	CITATIONS
19	Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2′-deoxyguanosine in mice. Toxicology and Applied Pharmacology, 2019, 377, 114633.	2.8	6
20	A Black Raspberry-Rich Diet Protects From Dextran Sulfate Sodium-Induced Intestinal Inflammation and Host Metabolic Perturbation in Association With Increased Aryl Hydrocarbon Receptor Ligands in the Gut Microbiota of Mice. Frontiers in Nutrition, 0, 9, .	3.7	4
21	Draft Genome Sequences of Nine Campylobacter hyointestinalis subsp. lawsonii Strains. Microbiology Resource Announcements, 2018, 7, .	0.6	3
22	Detecting Glucose Fluctuations in the Campylobacter jejuni N-Glycan Structure. ACS Chemical Biology, 2021, 16, 2690-2701.	3.4	2