
## **Gareth Griffiths**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11070208/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell, 1988, 52, 329-341.                                                                                                                    | 13.5 | 856       |
| 2  | β-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the golgi complex, shows<br>homology to β-adaptin. Cell, 1991, 64, 649-665.                                                          | 13.5 | 504       |
| 3  | On the preparation of cryosections for immunocytochemistry. Journal of Ultrastructure Research, 1984, 89, 65-78.                                                                                              | 1.4  | 476       |
| 4  | Fine Structure Immunocytochemistry. , 1993, , .                                                                                                                                                               |      | 418       |
| 5  | Actin-based motility of vaccinia virus. Nature, 1995, 378, 636-638.                                                                                                                                           | 13.7 | 416       |
| 6  | Direct Visualization of the Outer Membrane of Mycobacteria and Corynebacteria in Their Native State.<br>Journal of Bacteriology, 2008, 190, 5672-5680.                                                        | 1.0  | 391       |
| 7  | MOM19, an import receptor for mitochondrial precursor proteins. Cell, 1989, 59, 1061-1070.                                                                                                                    | 13.5 | 348       |
| 8  | A mitochondrial import receptor for the ADP/ATP carrier. Cell, 1990, 62, 107-115.                                                                                                                             | 13.5 | 308       |
| 9  | Mutations in the cytoplasmic domain of the 275 kd mannose 6-phosphate receptor differentially alter<br>lysosomal enzyme sorting and endocytosis. Cell, 1989, 57, 787-796.                                     | 13.5 | 287       |
| 10 | Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome.<br>Cellular Microbiology, 2010, 12, 1046-1063.                                                                 | 1.1  | 286       |
| 11 | Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature, 1990, 348, 610-616.                                                         | 13.7 | 271       |
| 12 | Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nature Cell Biology, 2003, 5, 793-802.                                                      | 4.6  | 245       |
| 13 | Anti-inflammatory Effects of Phosphatidylcholine. Journal of Biological Chemistry, 2007, 282, 27155-27164.                                                                                                    | 1.6  | 236       |
| 14 | Passage of viral membrane proteins through the Golgi complex. Journal of Molecular Biology, 1981,<br>152, 663-698.                                                                                            | 2.0  | 222       |
| 15 | RanGTP mediates nuclear pore complex assembly. Nature, 2003, 424, 689-694.                                                                                                                                    | 13.7 | 219       |
| 16 | Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11633-11638. | 3.3  | 215       |
| 17 | Molecular Requirements for Bi-directional Movement of Phagosomes Along Microtubules. Journal of<br>Cell Biology, 1997, 137, 113-129.                                                                          | 2.3  | 212       |
| 18 | Lysosomal Enzyme Trafficking between Phagosomes, Endosomes, and Lysosomes in J774 Macrophages.<br>Journal of Biological Chemistry, 1998, 273, 9842-9851.                                                      | 1.6  | 183       |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes. EMBO Journal,<br>2000, 19, 199-212.                                                                                                               | 3.5  | 162       |
| 20 | Entry of the Two Infectious Forms of Vaccinia Virus at the Plasma Membane Is Signaling-Dependent for the IMV but Not the EEV. Molecular Biology of the Cell, 2000, 11, 2497-2511.                                                | 0.9  | 162       |
| 21 | Characterization of the Coronavirus Mouse Hepatitis Virus Strain A59 Small Membrane Protein E.<br>Journal of Virology, 2000, 74, 2333-2342.                                                                                      | 1.5  | 161       |
| 22 | Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells. BMC Biology, 2018, 16, 1.                                                       | 1.7  | 156       |
| 23 | The arguments for pre-existing early and late endosomes. Trends in Cell Biology, 1991, 1, 5-9.                                                                                                                                   | 3.6  | 152       |
| 24 | Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella.<br>Cellular Microbiology, 2001, 3, 567-577.                                                                                      | 1.1  | 149       |
| 25 | Phagocytosis: latex leads the way. Current Opinion in Cell Biology, 2003, 15, 498-503.                                                                                                                                           | 2.6  | 146       |
| 26 | Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis:<br>phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cellular<br>Microbiology, 2001, 3, 551-566. | 1.1  | 144       |
| 27 | A role for the small GTPase Rab21 in the early endocytic pathway. Journal of Cell Science, 2004, 117, 6297-6311.                                                                                                                 | 1.2  | 141       |
| 28 | Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cellular<br>Microbiology, 2011, 13, 1601-1617.                                                                                             | 1.1  | 141       |
| 29 | Cell biology of viruses that assemble along the biosynthetic pathway. Seminars in Cell Biology, 1992, 3, 367-381.                                                                                                                | 3.5  | 139       |
| 30 | Nanoparticles as Drug Delivery System against Tuberculosis in Zebrafish Embryos: Direct Visualization<br>and Treatment. ACS Nano, 2014, 8, 7014-7026.                                                                            | 7.3  | 128       |
| 31 | Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nature Communications, 2016, 7, 10974.                                                                                                             | 5.8  | 128       |
| 32 | Nanobead-based interventions for the treatment and prevention of tuberculosis. Nature Reviews<br>Microbiology, 2010, 8, 827-834.                                                                                                 | 13.6 | 127       |
| 33 | In Vitro Fusion of Phagosomes with Different Endocytic Organelles from J774 Macrophages. Journal of Biological Chemistry, 1998, 273, 30379-30390.                                                                                | 1.6  | 114       |
| 34 | On the killing of mycobacteria by macrophages. Cellular Microbiology, 2007, 10, 071106215315001-???.                                                                                                                             | 1.1  | 114       |
| 35 | Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cellular<br>Microbiology, 2006, 8, 939-960.                                                                                            | 1.1  | 110       |
| 36 | NF-κB Activation Controls Phagolysosome Fusion-Mediated Killing of Mycobacteria by Macrophages.<br>Journal of Immunology, 2008, 181, 2651-2663.                                                                                  | 0.4  | 109       |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Endobrevin, a Novel Synaptobrevin/VAMP-Like Protein Preferentially Associated with the Early<br>Endosome. Molecular Biology of the Cell, 1998, 9, 1549-1563.                                                                | 0.9 | 108       |
| 38 | ATP-dependent Membrane Assembly of F-Actin Facilitates Membrane Fusion. Molecular Biology of the<br>Cell, 2001, 12, 155-170.                                                                                                | 0.9 | 106       |
| 39 | Mannose 6-Phosphate Receptors and ADP-ribosylation Factors Cooperate for High Affinity Interaction of the AP-1 Golgi Assembly Proteins with Membranes. Journal of Biological Chemistry, 1996, 271, 2162-2170.               | 1.6 | 104       |
| 40 | Exosomal Hsp70 Induces a Pro-Inflammatory Response to Foreign Particles Including Mycobacteria.<br>PLoS ONE, 2010, 5, e10136.                                                                                               | 1.1 | 104       |
| 41 | Fusion between Phagosomes, Early and Late Endosomes: A Role for Actin in Fusion between Late, but<br>Not Early Endocytic Organelles. Molecular Biology of the Cell, 2004, 15, 345-358.                                      | 0.9 | 103       |
| 42 | Polylactide-co-glycolide-rifampicin-nanoparticles efficiently clear Mycobacterium bovis BCG infection<br>in macrophages and remain membrane-bound in phago-lysosomes. Journal of Cell Science, 2013, 126,<br>3043-54.       | 1.2 | 97        |
| 43 | Myosin Va Bound to Phagosomes Binds to F-Actin and Delays Microtubule-dependent Motility.<br>Molecular Biology of the Cell, 2001, 12, 2742-2755.                                                                            | 0.9 | 91        |
| 44 | TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in<br>intestinal epithelial cells. BMC Gastroenterology, 2009, 9, 53.                                                           | 0.8 | 90        |
| 45 | Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into<br>Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS Nano, 2018, 12, 8646-8661.                                  | 7.3 | 89        |
| 46 | Dissociation of Coatomer from Membranes Is Required for Brefeldin A–induced Transfer of Golgi<br>Enzymes to the Endoplasmic Reticulum. Journal of Cell Biology, 1997, 137, 319-333.                                         | 2.3 | 86        |
| 47 | On vesicles and membrane compartments. Protoplasma, 1996, 195, 37-58.                                                                                                                                                       | 1.0 | 83        |
| 48 | A Rapid Method for Assessing the Distribution of Gold Labeling on Thin Sections. Journal of Histochemistry and Cytochemistry, 2004, 52, 991-1000.                                                                           | 1.3 | 83        |
| 49 | An Unconventional Role for Cytoplasmic Disulfide Bonds in Vaccinia Virus Proteins. Journal of Cell<br>Biology, 1999, 144, 267-279.                                                                                          | 2.3 | 80        |
| 50 | The Role of a 21-kDa Viral Membrane Protein in the Assembly of Vaccinia Virus from the Intermediate<br>Compartment. Journal of Biological Chemistry, 1996, 271, 14950-14958.                                                | 1.6 | 78        |
| 51 | Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. Journal of Cell Science, 2009, 122, 2935-2945.                                                          | 1.2 | 77        |
| 52 | Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate<br>phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Frontiers in Cellular and Infection<br>Microbiology, 2013, 3, 19. | 1.8 | 76        |
| 53 | Integrated network reconstruction, visualization and analysis using YANAsquare. BMC Bioinformatics, 2007, 8, 313.                                                                                                           | 1.2 | 75        |
| 54 | <i>Candida albicans</i> actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cellular Microbiology, 2009, 11, 560-589.                                                                     | 1.1 | 75        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis. Journal of<br>Clinical Investigation, 2016, 126, 1093-1108.                                                                       | 3.9  | 75        |
| 56 | Zebrafish as a model system for characterization of nanoparticles against cancer. Nanoscale, 2016, 8, 862-877.                                                                                                        | 2.8  | 74        |
| 57 | Microtubule-associated Protein-dependent Binding of Phagosomes to Microtubules. Journal of<br>Biological Chemistry, 1996, 271, 3803-3811.                                                                             | 1.6  | 73        |
| 58 | Phosphoinositides Regulate Membrane-dependent Actin Assembly by Latex Bead Phagosomes. Molecular<br>Biology of the Cell, 2002, 13, 1190-1202.                                                                         | 0.9  | 71        |
| 59 | Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin.<br>Journal of Cell Science, 2010, 123, 2502-2511.                                                                       | 1.2  | 70        |
| 60 | Whole Cell Cryo-Electron Tomography Reveals Distinct Disassembly Intermediates of Vaccinia Virus.<br>PLoS ONE, 2007, 2, e420.                                                                                         | 1.1  | 69        |
| 61 | GS32, a Novel Golgi SNARE of 32 kDa, Interacts Preferentially with Syntaxin 6. Molecular Biology of the Cell, 1999, 10, 119-134.                                                                                      | 0.9  | 68        |
| 62 | Characterization of Vaccinia Virus Intracellular Cores: Implications for Viral Uncoating and Core<br>Structure. Journal of Virology, 2000, 74, 3525-3536.                                                             | 1.5  | 68        |
| 63 | cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events:<br>consequences for mycobacteria. Journal of Cell Science, 2006, 119, 3686-3694.                                              | 1.2  | 64        |
| 64 | Ezrin Promotes Actin Assembly at the Phagosome Membrane and Regulates Phago‣ysosomal Fusion.<br>Traffic, 2011, 12, 421-437.                                                                                           | 1.3  | 61        |
| 65 | On phagosome individuality and membrane signalling networks. Trends in Cell Biology, 2004, 14, 343-351.                                                                                                               | 3.6  | 60        |
| 66 | Effects of omega-3 and -6 fatty acids on Mycobacterium tuberculosis in macrophages and in mice.<br>Microbes and Infection, 2008, 10, 1379-1386.                                                                       | 1.0  | 59        |
| 67 | Structure and Assembly of Intracellular Mature Vaccinia Virus: Thin-Section Analyses. Journal of<br>Virology, 2001, 75, 11056-11070.                                                                                  | 1.5  | 56        |
| 68 | Structure and Assembly of Intracellular Mature Vaccinia Virus: Isolated-Particle Analysis. Journal of<br>Virology, 2001, 75, 11034-11055.                                                                             | 1.5  | 55        |
| 69 | Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Nanotoxicology, 2016, 10, 680-688.                                                  | 1.6  | 55        |
| 70 | Cell evolution and the problem of membrane topology. Nature Reviews Molecular Cell Biology, 2007,<br>8, 1018-1024.                                                                                                    | 16.1 | 50        |
| 71 | A simpler way of comparing the labelling densities of cellular compartments illustrated using data<br>from VPARP and LAMP-1 immunogold labelling experiments. Histochemistry and Cell Biology, 2003, 119,<br>333-341. | 0.8  | 48        |
| 72 | The Block in Assembly of Modified Vaccinia Virus Ankara in HeLa Cells Reveals New Insights into<br>Vaccinia Virus Morphogenesis. Journal of Virology, 2002, 76, 8318-8334.                                            | 1.5  | 47        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Control of relative radiation pressure in optical traps: Application to phagocytic membrane binding studies. Physical Review E, 2005, 71, 061927.                                                                                          | 0.8 | 46        |
| 74 | Tyrosine phosphatase MptpA of Mycobacterium tuberculosis inhibits phagocytosis and increases actin polymerization in macrophages. Research in Microbiology, 2005, 156, 1005-1013.                                                          | 1.0 | 45        |
| 75 | Lipids regulate P2X7-receptor-dependent actin assembly by phagosomes via ADP translocation and ATP synthesis in the phagosome lumen. Journal of Cell Science, 2009, 122, 499-504.                                                          | 1.2 | 44        |
| 76 | Gut Thoughts on the Golgi Complex. Traffic, 2000, 1, 738-745.                                                                                                                                                                              | 1.3 | 42        |
| 77 | Role of lipids in killing mycobacteria by macrophages: evidence for NF-κB-dependent and -independent killing induced by different lipids. Cellular Microbiology, 2009, 11, 406-420.                                                        | 1.1 | 41        |
| 78 | Nanoparticle entry into cells; the cell biology weak link. Advanced Drug Delivery Reviews, 2022, 188, 114403.                                                                                                                              | 6.6 | 31        |
| 79 | Sphingosine-1-phosphate receptors stimulate macrophage plasma-membrane actin assembly via ADP release, ATP synthesis and P2X7R activation. Journal of Cell Science, 2009, 122, 505-512.                                                    | 1.2 | 30        |
| 80 | Gaining insight into a complex organelle, the phagosome, using two-dimensional gel electrophoresis.<br>Electrophoresis, 1995, 16, 2249-2257.                                                                                               | 1.3 | 29        |
| 81 | Protective Role of the Capsule and Impact of Serotype 4 Switching on Streptococcus mitis. Infection and Immunity, 2014, 82, 3790-3801.                                                                                                     | 1.0 | 29        |
| 82 | Identification of an immune regulated phagosomal Rab cascade in macrophages. Journal of Cell<br>Science, 2014, 127, 2071-82.                                                                                                               | 1.2 | 29        |
| 83 | Chapter 3 Preparation of Cells and Tissues for Immuno EM. Methods in Cell Biology, 2008, 88, 45-58.                                                                                                                                        | 0.5 | 28        |
| 84 | Poly(I:C)-Encapsulating Nanoparticles Enhance Innate Immune Responses to the Tuberculosis Vaccine<br>Bacille Calmette–Guérin (BCG) via Synergistic Activation of Innate Immune Receptors. Molecular<br>Pharmaceutics, 2017, 14, 4098-4112. | 2.3 | 28        |
| 85 | Bringing electron microscopy back into focus for cell biology. Trends in Cell Biology, 2001, 11, 153-154.                                                                                                                                  | 3.6 | 27        |
| 86 | Initial receptor–ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis. European Journal of Cell Biology, 2010, 89, 693-704.                                            | 1.6 | 25        |
| 87 | Porins facilitate nitric oxide-mediated killing of mycobacteria. Microbes and Infection, 2009, 11, 868-875.                                                                                                                                | 1.0 | 21        |
| 88 | Membrane-active antimicrobial peptides and human placental lysosomal extracts are highly active against mycobacteria. Peptides, 2011, 32, 881-887.                                                                                         | 1.2 | 21        |
| 89 | Layer-by-layer nanocoating of live Bacille-Calmette-Guérin mycobacteria with poly(I:C) and chitosan enhances pro-inflammatory activation and bactericidal capacity in murine macrophages. Biomaterials, 2016, 111, 1-12.                   | 5.7 | 21        |
| 90 | Actin assembly induced by polylysine beads or purified phagosomes: Quantitation by a new flow cytometry assay. Cytometry, 2000, 41, 46-54.                                                                                                 | 1.8 | 20        |

| #   | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Electron microscopy applications for quantitative cellular microbiology. Technoreview. Cellular<br>Microbiology, 2001, 3, 659-668.                                                                         | 1.1  | 18        |
| 92  | Quantitative Aspects of Immunocytochemistry. , 1993, , 371-445.                                                                                                                                            |      | 18        |
| 93  | High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel<br>Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Frontiers in Immunology, 2021, 12, 769901. | 2.2  | 18        |
| 94  | The structure and function of a mannose 6-phosphate receptor- enriched, pre-lysosomal compartment in animal cells. Journal of Cell Science, 1989, 1989, 139-147.                                           | 1.2  | 17        |
| 95  | Phagosome proteomes open the way to a better understanding of phagosome function. Genome<br>Biology, 2007, 8, 207.                                                                                         | 13.9 | 17        |
| 96  | Fixation for Fine Structure Preservation and Immunocytochemistry. , 1993, , 26-89.                                                                                                                         |      | 16        |
| 97  | Modelling phagosomal lipid networks that regulate actin assembly. BMC Systems Biology, 2008, 2, 107.                                                                                                       | 3.0  | 14        |
| 98  | Interferon-γ–inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages.<br>Molecular Biology of the Cell, 2015, 26, 3061-3070.                                                    | 0.9  | 11        |
| 99  | Adaptation of Cryoâ€Sectioning for IEM Labeling of Asymmetric Samples: A Study Using<br><i>Caenorhabditis elegans</i> . Traffic, 2015, 16, 893-905.                                                        | 1.3  | 10        |
| 100 | Cryo and Replica Techniques for Immunolabelling. , 1993, , 137-203.                                                                                                                                        |      | 9         |
| 101 | The zebrafish embryo as an <i>in vivo</i> model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds. DMM Disease Models and Mechanisms, 2022, 15, .                               | 1.2  | 8         |
| 102 | Ultrastructure in cell biology: do we still need it?. European Journal of Cell Biology, 2004, 83, 245-251.                                                                                                 | 1.6  | 5         |
| 103 | Kiyoteru Tokuyasu: a pioneer of cryo-ultramicrotomy. Microscopy (Oxford, England), 2015, 64, 377-379.                                                                                                      | 0.7  | 5         |
| 104 | Labelling Reactions for Immunocytochemistry. , 1993, , 237-278.                                                                                                                                            |      | 5         |
| 105 | Kiyoteru Tokuyasu: a pioneer of cryoâ€ultramicrotomy. Journal of Microscopy, 2015, 260, 235-237.                                                                                                           | 0.8  | 4         |
| 106 | The Compartments of the Endocytic Pathway. , 1992, , 73-83.                                                                                                                                                |      | 4         |
| 107 | Embedding Media for Section Immunocytochemistry. , 1993, , 90-136.                                                                                                                                         |      | 3         |
| 108 | Actin assembly induced by polylysine beads or purified phagosomes: Quantitation by a new flow cytometry assay. , 2000, 41, 46.                                                                             |      | 2         |

| #   | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Fine-Structure Preservation. , 1993, , 9-25.                                                                                                                                                                |      | 2         |
| 110 | Microtubule Dependent Transport and Fusion of Phagosomes with the Endocytic Pathway. , 1995, , 211-222.                                                                                                     |      | 1         |
| 111 | Non-Immunological High-Affinity Interactions Used for Labelling. , 1993, , 307-344.                                                                                                                         |      | 1         |
| 112 | A little learning. Nature, 1997, 390, 548-548.                                                                                                                                                              | 13.7 | 0         |
| 113 | Cryosectioning and Immunolabeling: The Contributions of Kiyoteru Tokuyasu. Microscopy Today, 2018, 26, 44-49.                                                                                               | 0.2  | 0         |
| 114 | Hydrated cryo-section studies of endocytic structures in cells containing internalized gold markers<br>imaged by TEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 950-951. | 0.0  | 0         |