Michael Goggins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11069427/publications.pdf

Version: 2024-02-01

227 40,839 99
papers citations h-index

197 g-index

234 234 all docs citations

234 times ranked 36732 citing authors

#	Article	IF	CITATIONS
1	Serum Carboxypeptidase Activity and Genotype-Stratified CA19-9 to Detect Early-Stage Pancreatic Cancer. Clinical Gastroenterology and Hepatology, 2022, 20, 2267-2275.e2.	4.4	8
2	Endoplasmic stressâ€inducing variants in <scp><i>CPB1</i></scp> and <scp><i>CPA1</i></scp> and risk of pancreatic cancer: A caseâ€control study and metaâ€analysis. International Journal of Cancer, 2022, 150, 1123-1133.	5.1	11
3	The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. Journal of Clinical Oncology, 2022, 40, 3257-3266.	1.6	69
4	Examination of ATM, BRCA1, and BRCA2 promoter methylation in patients with pancreatic cancer. Pancreatology, 2021, 21, 938-941.	1.1	1
5	COVID-19 related pancreatic cancer surveillance disruptions amongst high-risk individuals. Pancreatology, 2021, 21, 1048-1051.	1.1	8
6	Inherited Pancreatic Cancer Syndromes and High-Risk Screening. Surgical Oncology Clinics of North America, 2021, 30, 773-786.	1.5	16
7	Screening for Pancreatic Ductal Adenocarcinoma: Are We Asking the Impossible?—Letter. Cancer Prevention Research, 2021, 14, 973-974.	1.5	3
8	Gene Variants That Affect Levels of Circulating Tumor Markers Increase Identification of Patients With Pancreatic Cancer. Clinical Gastroenterology and Hepatology, 2020, 18, 1161-1169.e5.	4.4	31
9	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	6.3	59
10	Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut, 2020, 69, 7-17.	12.1	357
11	Pancreatic circulating tumor cell detection by targeted single-cell next-generation sequencing. Cancer Letters, 2020, 493, 245-253.	7.2	18
12	Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms. Journal of Pathology, 2020, 252, 252-262.	4.5	30
13	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	2.5	5
14	Recent Trends in the Incidence and Survival of Stage 1A Pancreatic Cancer: A Surveillance, Epidemiology, and End Results Analysis. Journal of the National Cancer Institute, 2020, 112, 1162-1169.	6.3	114
15	Detection of Circulating Tumor DNA in Patients with Pancreatic Cancer Using Digital Next-Generation Sequencing. Journal of Molecular Diagnostics, 2020, 22, 748-756.	2.8	11
16	NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 380-391.	4.9	314
17	Histomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants. Modern Pathology, 2019, 32, 1806-1813.	5 . 5	21
18	Multilaboratory Assessment of a New Reference Material for Quality Assurance of Cell-Free Tumor DNA Measurements. Journal of Molecular Diagnostics, 2019, 21, 658-676.	2.8	13

#	Article	IF	CITATIONS
19	Pancreatic Juice Exosomal MicroRNAs as Biomarkers for Detection of Pancreatic Ductal Adenocarcinoma. Annals of Surgical Oncology, 2019, 26, 2104-2111.	1.5	64
20	Evaluating Susceptibility to Pancreatic Cancer: ASCO Provisional Clinical Opinion. Journal of Clinical Oncology, 2019, 37, 153-164.	1.6	135
21	Prevalence of Germline Mutations Associated With Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms. Gastroenterology, 2019, 156, 1905-1913.	1.3	47
22	Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. Journal of Clinical Oncology, 2019, 37, 1070-1080.	1.6	65
23	Blood Type as a Predictor of High-Grade Dysplasia and Associated Malignancy in Patients with Intraductal Papillary Mucinous Neoplasms. Journal of Gastrointestinal Surgery, 2019, 23, 477-483.	1.7	8
24	Pancreatic cancer arising in the remnant pancreas is not always a relapse of the preceding primary. Modern Pathology, 2019, 32, 659-665.	5.5	20
25	Hyaluronan activated-metabolism phenotype (HAMP) in pancreatic ductal adenocarcinoma. Oncotarget, 2019, 10, 5592-5604.	1.8	6
26	Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. ELife, 2019, 8, .	6.0	103
27	Mutations in the pancreatic secretory enzymes <i>CPA1</i> and <i>CPB1</i> are associated with pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4767-4772.	7.1	65
28	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
29	BRCA1/BRCA2 Germline Mutation Carriers and Sporadic Pancreatic Ductal Adenocarcinoma. Journal of the American College of Surgeons, 2018, 226, 630-637e1.	0.5	62
30	Pancreatic Juice Mutation Concentrations Can Help Predict the Grade of Dysplasia in Patients Undergoing Pancreatic Surveillance. Clinical Cancer Research, 2018, 24, 2963-2974.	7.0	55
31	Genome-Wide Somatic Copy Number Alterations and Mutations in High-Grade Pancreatic Intraepithelial Neoplasia. American Journal of Pathology, 2018, 188, 1723-1733.	3.8	32
32	Diagnostic Biomarkers. , 2018, , 659-680.		4
33	Simple Detection of Telomere Fusions in Pancreatic Cancer, Intraductal Papillary Mucinous Neoplasm, and Pancreatic Cyst Fluid. Journal of Molecular Diagnostics, 2018, 20, 46-55.	2.8	16
34	The Effect of Pancreatic Juice Collection Time on the Detection of KRAS Mutations. Pancreas, 2018, 47, 35-39.	1.1	11
35	Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology, 2018, 155, 740-751.e2.	1.3	288
36	A novel approach for selecting combination clinical markers of pathology applied to a large retrospective cohort of surgically resected pancreatic cysts. Journal of the American Medical Informatics Association: JAMIA, 2017, 24, 145-152.	4.4	34

#	Article	IF	CITATIONS
37	Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut, 2017, 66, 1677-1687.	12.1	134
38	Using an endoscopic distal cap to collect pancreatic fluid fromÂthe ampulla (with video). Gastrointestinal Endoscopy, 2017, 86, 1152-1156.e2.	1.0	10
39	Diagnostic Biomarkers. , 2017, , 1-22.		0
40	Duodenal Involvement is an Independent Prognostic Factor for Patients with Surgically Resected Pancreatic Ductal Adenocarcinoma. Annals of Surgical Oncology, 2017, 24, 2379-2386.	1.5	14
41	Susceptibility of ATM-deficient pancreatic cancer cells to radiation. Cell Cycle, 2017, 16, 991-998.	2.6	24
42	Targeted DNA Sequencing Reveals Patterns of Local Progression in the Pancreatic Remnant Following Resection of Intraductal Papillary Mucinous Neoplasm (IPMN) of the Pancreas. Annals of Surgery, 2017, 266, 133-141.	4.2	106
43	Editorial: Circulating Biomarkers to Identify Patients With Resectable Pancreatic Cancer. Journal of the National Cancer Institute, 2017, 109, .	6.3	3
44	Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell, 2017, 32, 824-839.e8.	16.8	97
45	Circulating Tumor Cells Expressing Markers of Tumor-Initiating Cells Predict Poor Survival and Cancer Recurrence in Patients with Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2017, 23, 2681-2690.	7.0	91
46	IL2RG, identified as overexpressed by RNA-seq profiling of pancreatic intraepithelial neoplasia, mediates pancreatic cancer growth. Oncotarget, 2017, 8, 83370-83383.	1.8	14
47	Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. Journal of Clinical Oncology, 2017, 35, 3382-3390.	1.6	316
48	Lack of association between the pancreatitis risk allele CEL-HYB and pancreatic cancer. Oncotarget, 2017, 8, 50824-50831.	1.8	11
49	Olaparib in combination with irinotecan, cisplatin, and mitomycin C in patients with advanced pancreatic cancer. Oncotarget, 2017, 8, 44073-44081.	1.8	63
50	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	1.8	88
51	p120 Catenin Suppresses Basal Epithelial Cell Extrusion in Invasive Pancreatic Neoplasia. Cancer Research, 2016, 76, 3351-3363.	0.9	29
52	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	9.4	282
53	Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight. Cancer Science, 2016, 107, 569-575.	3.9	106
54	Obstructive Sleep Apnea and Pathological Characteristics of Resected Pancreatic Ductal Adenocarcinoma. PLoS ONE, 2016, 11, e0164195.	2.5	15

#	Article	IF	CITATIONS
55	Overexpression of <i>ankyrin1</i> promotes pancreatic cancer cell growth. Oncotarget, 2016, 7, 34977-34987.	1.8	18
56	A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. American Journal of Surgical Pathology, 2015, 39, 1730-1741.	3.7	626
57	Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.	6.3	152
58	Vitamin D Metabolic Pathway Genes and Pancreatic Cancer Risk. PLoS ONE, 2015, 10, e0117574.	2.5	29
59	A histomorphologic comparison of familial and sporadic pancreatic cancers. Pancreatology, 2015, 15, 387-391.	1.1	32
60	Pathological and Molecular Evaluation of Pancreatic Neoplasms. Seminars in Oncology, 2015, 42, 28-39.	2.2	64
61	A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts. Gastroenterology, 2015, 149, 1501-1510.	1.3	376
62	Common variation at $2p13.3$, $3q29$, $7p13$ and $17q25.1$ associated with susceptibility to pancreatic cancer. Nature Genetics, 2015 , 47 , $911-916$.	21.4	224
63	KRAS and Guanine Nucleotide-Binding Protein Mutations in Pancreatic Juice Collected From the Duodenum of Patients at High Risk for Neoplasia Undergoing Endoscopic Ultrasound. Clinical Gastroenterology and Hepatology, 2015, 13, 963-969.e4.	4.4	74
64	Incremental value of secretin-enhanced magnetic resonance cholangiopancreatography in detecting ductal communication in a population with high prevalence of small pancreatic cysts. European Journal of Radiology, 2015, 84, 575-580.	2.6	19
65	Classifying pancreatic cancer using gene expression profiling. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 613-614.	17.8	8
66	Time to progression of pancreatic ductal adenocarcinoma from low-to-high tumour stages. Gut, 2015, 64, 1783-1789.	12.1	157
67	Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Science Translational Medicine, 2014, 6, 224ra24.	12.4	3,665
68	Mutant KRAS and GNAS DNA Concentrations in Secretin-Stimulated Pancreatic Fluid Collected from the Pancreatic Duct and the Duodenal Lumen. Clinical and Translational Gastroenterology, 2014, 5, e62.	2.5	28
69	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
70	Targeted nextâ€generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. Journal of Pathology, 2014, 233, 217-227.	4.5	308
71	A Systematic Review of Solid-Pseudopapillary Neoplasms. Pancreas, 2014, 43, 331-337.	1.1	276
72	Having Pancreatic Cancer with Tumoral Loss of ATM and Normal TP53 Protein Expression Is Associated with a Poorer Prognosis. Clinical Cancer Research, 2014, 20, 1865-1872.	7.0	81

#	Article	IF	Citations
73	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	21.4	294
74	The Early Detection of Pancreatic Cancer: What Will It Take to Diagnose and Treat Curable Pancreatic Neoplasia?. Cancer Research, 2014, 74, 3381-3389.	0.9	207
75	Role of a Multidisciplinary Clinic in the Management of Patients with Pancreatic Cysts: A Single-Center Cohort Study. Annals of Surgical Oncology, 2014, 21, 3668-3674.	1.5	45
76	Liver transplant patients have a similar risk of progression as sporadic patients with branch duct intraductal papillary mucinous neoplasms. Liver Transplantation, 2014, 20, n/a-n/a.	2.4	7
77	Epigenetic silencing of EYA2 in pancreatic adenocarcinomas promotes tumor growth. Oncotarget, 2014, 5, 2575-2587.	1.8	29
78	International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut, 2013, 62, 339-347.	12.1	672
79	Mutant TP53 in Duodenal Samples of Pancreatic Juice From Patients With Pancreatic Cancer or High-Grade Dysplasia. Clinical Gastroenterology and Hepatology, 2013, 11, 719-730.e5.	4.4	154
80	DNA Methylation Analysis in Human Cancer. Methods in Molecular Biology, 2013, 980, 131-156.	0.9	8
81	Epigenetic Alterations in Pancreatic Cancer. , 2013, , 185-207.		1
82	Polymorphisms in genes related to one-carbon metabolism are not related to pancreatic cancer in PanScan and PanC4. Cancer Causes and Control, 2013, 24, 595-602.	1.8	4
83	PAM4 enzyme immunoassay alone and in combination with CA $19\hat{a} \in 9$ for the detection of pancreatic adenocarcinoma. Cancer, 2013, 119, 522-528.	4.1	38
84	Serum miR-1290 as a Marker of Pancreatic Cancerâ€"Response. Clinical Cancer Research, 2013, 19, 5252-5253.	7.0	12
85	Mutant <i>GNAS</i> detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut, 2013, 62, 1024-1033.	12.1	160
86	MicroRNA Array Analysis Finds Elevated Serum miR-1290 Accurately Distinguishes Patients with Low-Stage Pancreatic Cancer from Healthy and Disease Controls. Clinical Cancer Research, 2013, 19, 3600-3610.	7.0	279
87	An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General Population. PLoS ONE, 2013, 8, e72311.	2.5	120
88	<i>ATM</i> Mutations in Patients with Hereditary Pancreatic Cancer. Cancer Discovery, 2012, 2, 41-46.	9.4	442
89	Genome-Wide CpG Island Profiling of Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clinical Cancer Research, 2012, 18, 700-712.	7.0	69
90	GLP-1 Receptor Agonist Effects on Normal and Neoplastic Pancreata. Diabetes, 2012, 61, 989-990.	0.6	9

#	Article	IF	Citations
91	Genome-Wide Somatic Copy Number Alterations in Low-Grade PanINs and IPMNs from Individuals with a Family History of Pancreatic Cancer. Clinical Cancer Research, 2012, 18, 4303-4312.	7.0	43
92	Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis, 2012, 33, 1384-1390.	2.8	102
93	The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature, 2012, 486, 266-270.	27.8	297
94	Vascular Invasion in Infiltrating Ductal Adenocarcinoma of the Pancreas Can Mimic Pancreatic Intraepithelial Neoplasia. American Journal of Surgical Pathology, 2012, 36, 235-241.	3.7	44
95	MicroRNA Alterations of Pancreatic Intraepithelial Neoplasias. Clinical Cancer Research, 2012, 18, 981-992.	7.0	198
96	Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Human Pathology, 2012, 43, 585-591.	2.0	56
97	Presence of Somatic Mutations in Most Early-Stage Pancreatic Intraepithelial Neoplasia. Gastroenterology, 2012, 142, 730-733.e9.	1.3	568
98	Frequent Detection of Pancreatic Lesions in Asymptomatic High-Risk Individuals. Gastroenterology, 2012, 142, 796-804.	1.3	570
99	Unlike Pancreatic Cancer Cells Pancreatic Cancer Associated Fibroblasts Display Minimal Gene Induction after 5-Aza-2′-Deoxycytidine. PLoS ONE, 2012, 7, e43456.	2.5	24
100	Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics, 2012, 44, 651-658.	21.4	519
101	Somatic mutations in the chromatin remodeling gene <i>ARID1A</i> occur in several tumor types. Human Mutation, 2012, 33, 100-103.	2.5	263
102	Presence of Pancreatic Intraepithelial Neoplasia in the Pancreatic Transection Margin does not Influence Outcome in Patients with RO Resected Pancreatic Cancer. Annals of Surgical Oncology, 2011, 18, 3493-3499.	1.5	62
103	Pancreatic cancer. Lancet, The, 2011, 378, 607-620.	13.7	2,155
104	Risk Factors of Familial Pancreatic Cancer in Japan. Pancreas, 2011, 40, 974-978.	1.1	36
105	Presence of Pancreatic Intraepithelial Neoplasia in the Pancreatic Transection Margin does not Influence Outcome in Patients with RO Resected Pancreatic Cancer. Indian Journal of Surgical Oncology, 2011, 2, 9-15.	0.7	2
106	Telomeres are shortened in acinar-to-ductal metaplasia lesions associated with pancreatic intraepithelial neoplasia but not in isolated acinar-to-ductal metaplasias. Modern Pathology, 2011, 24, 256-266.	5.5	34
107	Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas. Modern Pathology, 2011, 24, 1237-1247.	5.5	90
108	Genome-Wide Analysis of Promoter Methylation Associated with Gene Expression Profile in Pancreatic Adenocarcinoma. Clinical Cancer Research, 2011, 17, 4341-4354.	7.0	154

#	Article	IF	Citations
109	Recurrent <i>GNAS </i> Nutations Define an Unexpected Pathway for Pancreatic Cyst Development. Science Translational Medicine, 2011, 3, 92ra66.	12.4	703
110	Markers of Pancreatic Cancer: Working Toward Early Detection. Clinical Cancer Research, 2011, 17, 635-637.	7.0	39
111	Molecular Signatures of Pancreatic Cancer. Archives of Pathology and Laboratory Medicine, 2011, 135, 716-727.	2.5	130
112	A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.	21.4	539
113	Detection of Early-Stage Pancreatic Adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2786-2794.	2.5	45
114	Cyclooxygenase-Deficient Pancreatic Cancer Cells Use Exogenous Sources of Prostaglandins. Molecular Cancer Research, 2010, 8, 821-832.	3.4	27
115	Prognostic Significance of Tumorigenic Cells With Mesenchymal Features in Pancreatic Adenocarcinoma. Journal of the National Cancer Institute, 2010, 102, 340-351.	6.3	392
116	Pancreatic Cancers Epigenetically Silence <i>SIP1</i> and Hypomethylate and Overexpress <i>miR-200a/200b</i> in Association with Elevated Circulating <i>miR-200a</i> and <i>miR-200b</i> Levels. Cancer Research, 2010, 70, 5226-5237.	0.9	268
117	Overexpression of Smoothened Activates the Sonic Hedgehog Signaling Pathway in Pancreatic Cancer–Associated Fibroblasts. Clinical Cancer Research, 2010, 16, 1781-1789.	7.0	159
118	Pancreatic cancer <i>DNMT1</i> expression and sensitivity to <i>DNMT1</i> inhibitors. Cancer Biology and Therapy, 2010, 9, 321-329.	3.4	54
119	Inhibiting the Cyclin-Dependent Kinase CDK5 Blocks Pancreatic Cancer Formation and Progression through the Suppression of Ras-Ral Signaling. Cancer Research, 2010, 70, 4460-4469.	0.9	140
120	Surveillance in individuals at high risk of pancreatic cancer: too early to tell?. Gut, 2010, 59, 1005-1005.	12.1	5
121	Update on Familial Pancreatic Cancer. Advances in Surgery, 2010, 44, 293-311.	1.3	224
122	ABO blood group and other genetic variants associated with pancreatic cancer. Genome Medicine, 2010, 2, 39.	8.2	4
123	Diagnostic and Therapeutic Response Markers. , 2010, , 675-701.		7
124	Development of Novel Pancreatic Tumor Biomarkers. , 2010, , 1173-1201.		0
125	Absence of Deleterious Palladin Mutations in Patients with Familial Pancreatic Cancer: Table 1 Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1328-1330.	2.5	39
126	Exomic Sequencing Identifies <i>PALB2</i> as a Pancreatic Cancer Susceptibility Gene. Science, 2009, 324, 217-217.	12.6	713

#	Article	IF	CITATIONS
127	Elevated Cancer Mortality in the Relatives of Patients with Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2829-2834.	2.5	65
128	Absence of germline BRCA1 mutations in familial pancreatic cancer patients. Cancer Biology and Therapy, 2009, 8, 131-135.	3 . 4	50
129	Genetic Mutations Associated with Cigarette Smoking in Pancreatic Cancer. Cancer Research, 2009, 69, 3681-3688.	0.9	126
130	<i>SMAD4</i> Gene Mutations Are Associated with Poor Prognosis in Pancreatic Cancer. Clinical Cancer Research, 2009, 15, 4674-4679.	7.0	335
131	Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients. Clinical Cancer Research, 2009, 15, 7737-7743.	7. O	195
132	Serum Fatty Acid Synthase as a Marker of Pancreatic Neoplasia. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2380-2385.	2.5	81
133	<i>KRAS2</i> Mutations in Human Pancreatic Acinar-Ductal Metaplastic Lesions Are Limited to Those with PanIN: Implications for the Human Pancreatic Cancer Cell of Origin. Molecular Cancer Research, 2009, 7, 230-236.	3.4	98
134	Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics, 2009, 41, 986-990.	21.4	597
135	Epigenetics and epigenetic alterations in pancreatic cancer. International Journal of Clinical and Experimental Pathology, 2009, 2, 310-26.	0.5	54
136	Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas. Modern Pathology, 2008, 21, 1499-1507.	5 . 5	79
137	CpG island methylation profile of pancreatic intraepithelial neoplasia. Modern Pathology, 2008, 21, 238-244.	5 . 5	119
138	Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science, 2008, 321, 1801-1806.	12.6	3,755
139	DNA Methylation Alterations In Endoscopic Retrograde Cholangiopancreatography Brush Samples of Patients With Suspected Pancreaticobiliary Disease. Clinical Gastroenterology and Hepatology, 2008, 6, 1270-1278.	4.4	73
140	Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma. Cancer Biology and Therapy, 2008, 7, 1146-1156.	3.4	165
141	Pancreatic cancer associated fibroblasts display normal allelotypes. Cancer Biology and Therapy, 2008, 7, 882-888.	3.4	76
142	Allele-specific expression in the germline of patients with familial pancreatic cancer: An unbiased approach to cancer gene discovery. Cancer Biology and Therapy, 2008, 7, 135-144.	3.4	42
143	Genetic and Epigenetic Alterations of Familial Pancreatic Cancers. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 3536-3542.	2.5	79
144	New Markers of Pancreatic Cancer Identified Through Differential Gene Expression Analyses: Claudin 18 and Annexin A8. American Journal of Surgical Pathology, 2008, 32, 188-196.	3.7	121

#	Article	IF	Citations
145	Pancreatic Cancer Genomics, Epigenomics, and Proteomics. , 2008, , 229-252.		O
146	Amplification of EMSY gene in a subset of sporadic pancreatic adenocarcinomas. International Journal of Clinical and Experimental Pathology, 2008, 1, 343-51.	0.5	18
147	Update on pancreatic intraepithelial neoplasia. International Journal of Clinical and Experimental Pathology, 2008, 1, 306-16.	0.5	159
148	Emerging molecular biology of pancreatic cancer. Gastrointestinal Cancer Research: GCR, 2008, 2, S10-5.	0.7	14
149	The Prevalence of BRCA2 Mutations in Familial Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 342-346.	2.5	255
150	Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biology and Therapy, 2007, 6, 1592-1599.	3.4	36
151	Palladin is overexpressed in the non-neoplastic stroma of infiltrating ductal adenocarcinomas of the pancreas, but is only rarely overexpressed in neoplastic cells. Cancer Biology and Therapy, 2007, 6, 324-328.	3.4	50
152	Tumor COX-2 expression and prognosis of patients with resectable pancreatic cancer. Cancer Biology and Therapy, 2007, 6, 1569-1575.	3.4	63
153	Peritumoral Fibroblast SPARC Expression and Patient Outcome With Resectable Pancreatic Adenocarcinoma. Journal of Clinical Oncology, 2007, 25, 319-325.	1.6	372
154	Genome-Wide Allelotypes of Familial Pancreatic Adenocarcinomas and Familial and Sporadic Intraductal Papillary Mucinous Neoplasms. Clinical Cancer Research, 2007, 13, 6019-6025.	7.0	52
155	Familial pancreatic cancer: from genes to improved patient care. Expert Review of Gastroenterology and Hepatology, 2007, 1, 81-88.	3.0	16
156	Precursors to Pancreatic Cancer. Gastroenterology Clinics of North America, 2007, 36, 831-849.	2.2	174
157	Identifying Molecular Markers for the Early Detection of Pancreatic Neoplasia. Seminars in Oncology, 2007, 34, 303-310.	2.2	89
158	Clinical importance of precursor lesions in the pancreas. Journal of Hepato-Biliary-Pancreatic Surgery, 2007, 14, 255-263.	2.0	64
159	Screening for Early Pancreatic Neoplasia in High-Risk Individuals: A Prospective Controlled Study. Clinical Gastroenterology and Hepatology, 2006, 4, 766-781.	4.4	493
160	Differential and Epigenetic Gene Expression Profiling Identifies Frequent Disruption of the RELN Pathway in Pancreatic Cancers. Gastroenterology, 2006, 130, 548-565.	1.3	139
161	Epigenetic alterations in intraductal papillary mucinous neoplasms of the pancreas. Journal of Hepato-Biliary-Pancreatic Surgery, 2006, 13, 280-285.	2.0	44
162	The role of epigenetic alterations in pancreatic cancer. Journal of Hepato-Biliary-Pancreatic Surgery, 2006, 13, 286-295.	2.0	83

#	Article	IF	Citations
163	Real-time detection of mesothelin in pancreatic cancer cell line supernatant using an acoustic wave immunosensor. Cancer Detection and Prevention, 2006, 30, 180-187.	2.1	31
164	Aberrant methylation of Reprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer, 2006, 107, 251-257.	4.1	43
165	Detecting low-abundance p16 and p53 mutations in pancreatic juice using a novel assay: Heteroduplex analysis of limiting dilution PCRs. Cancer Biology and Therapy, 2006, 5, 1392-1399.	3.4	19
166	Differentiating pancreatic lesions by microarray and QPCR analysis of pancreatic juice RNAs. Cancer Biology and Therapy, 2006, 5, 1383-1389.	3.4	48
167	Serum Markers in Patients with Resectable Pancreatic Adenocarcinoma: Macrophage Inhibitory Cytokine 1 versus CA19-9. Clinical Cancer Research, 2006, 12, 442-446.	7.0	197
168	DNA Methylation Alterations in the Pancreatic Juice of Patients with Suspected Pancreatic Disease. Cancer Research, 2006, 66, 1208-1217.	0.9	207
169	Pancreatic Cancer Genetic Epidemiology Consortium. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 704-710.	2.5	133
170	Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. American Journal of Surgical Pathology, 2006, 30, 1067-76.	3.7	261
171	Identification of Differentially Expressed Proteins in Pancreatic Cancer Using a Global Proteomic Approach., 2005, 103, 189-198.		11
172	Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene, 2005, 24, 850-858.	5.9	144
173	Increased prevalence of the BRCA2 polymorphic stop codon K3326X among individuals with familial pancreatic cancer. Oncogene, 2005, 24, 3652-3656.	5.9	68
174	Gene expression alterations in the non-neoplastic parenchyma adjacent to infiltrating pancreatic ductal adenocarcinoma. Modern Pathology, 2005, 18, 779-787.	5.5	66
175	Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Modern Pathology, 2005, 18, 959-963.	5.5	101
176	Gene Expression Profiles in Pancreatic Intraepithelial Neoplasia Reflect the Effects of Hedgehog Signaling on Pancreatic Ductal Epithelial Cells. Cancer Research, 2005, 65, 1619-1626.	0.9	223
177	Increased Cyclooxygenase-2 Expression in Duodenal Compared with Colonic Tissues in Familial Adenomatous Polyposis and Relationship to the \hat{a}^2 765G \hat{a}^4 0 COX-2 Polymorphism. Clinical Cancer Research, 2005, 11, 4090-4096.	7.0	58
178	The Chemokine Receptor CXCR4 is Regulated by DNA Methylation in Pancreatic Cancer. Cancer Biology and Therapy, 2005, 4, 77-83.	3.4	100
179	Epigenetic Down-Regulation of CDKN1C/p57KIP2 in Pancreatic Ductal Neoplasms Identified by Gene Expression Profiling. Clinical Cancer Research, 2005, 11, 4681-4688.	7.0	108
180	Aberrant methylation of the human hedgehog interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biology and Therapy, 2005, 4, 728-733.	3.4	83

#	Article	IF	Citations
181	Expression and prognostic significance of 14-3-3 sigma and ERM family protein expression in periampullary neoplasms. Cancer Biology and Therapy, 2005, 4, 596-601.	3.4	24
182	Molecular Markers of Early Pancreatic Cancer. Journal of Clinical Oncology, 2005, 23, 4524-4531.	1.6	212
183	Pancreaticobiliary Cancers With Deficient Methylenetetrahydrofolate Reductase Genotypes. Clinical Gastroenterology and Hepatology, 2005, 3, 752-760.	4.4	40
184	The Genetics of <i>FANCC </i> and <i>FANCG </i> in Familial Pancreatic Cancer. Cancer Biology and Therapy, 2004, 3, 167-169.	3.4	78
185	The Human MitoChip: A High-Throughput Sequencing Microarray for Mitochondrial Mutation Detection. Genome Research, 2004, 14, 812-819.	5.5	218
186	Gene Expression Profiling of Tumor–Stromal Interactions between Pancreatic Cancer Cells and Stromal Fibroblasts. Cancer Research, 2004, 64, 6950-6956.	0.9	145
187	Serum Diagnosis of Pancreatic Adenocarcinoma Using Surface-Enhanced Laser Desorption and Ionization Mass Spectrometry. Clinical Cancer Research, 2004, 10, 860-868.	7.0	273
188	Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Research, 2004, 64, 2634-2638.	0.9	595
189	Mesothelin-specific CD8+ T Cell Responses Provide Evidence of In Vivo Cross-Priming by Antigen-Presenting Cells in Vaccinated Pancreatic Cancer Patients. Journal of Experimental Medicine, 2004, 200, 297-306.	8.5	314
190	Gene expression profiling identifies markers of ampullary adenocarcinoma. Cancer Biology and Therapy, 2004, 3, 651-656.	3.4	35
191	Serum Macrophage Inhibitory Cytokine 1 as a Marker of Pancreatic and Other Periampullary Cancers. Clinical Cancer Research, 2004, 10, 2386-2392.	7.0	250
192	Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression. Cancer Biology and Therapy, 2004, 3, 1254-1261.	3.4	73
193	Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene, 2004, 23, 1531-1538.	5.9	154
194	Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays. Oncogene, 2004, 23, 9042-9051.	5.9	103
195	Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clinical Gastroenterology and Hepatology, 2004, 2, 606-621.	4.4	431
196	Gene Expression Profiling Identifies Genes Associated with Invasive Intraductal Papillary Mucinous Neoplasms of the Pancreas. American Journal of Pathology, 2004, 164, 903-914.	3.8	190
197	An Illustrated Consensus on the Classification of Pancreatic Intraepithelial Neoplasia and Intraductal Papillary Mucinous Neoplasms. American Journal of Surgical Pathology, 2004, 28, 977-987.	3.7	964
198	Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biology and Therapy, 2004, 3, 1081-1089.	3.4	52

#	Article	IF	Citations
199	SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor–stromal interactions. Oncogene, 2003, 22, 5021-5030.	5.9	263
200	Loss of Stk11/Lkb1 Expression in Pancreatic and Biliary Neoplasms. Modern Pathology, 2003, 16, 686-691.	5.5	104
201	Exploration of Global Gene Expression Patterns in Pancreatic Adenocarcinoma Using cDNA Microarrays. American Journal of Pathology, 2003, 162, 1151-1162.	3.8	450
202	Effects of 5-Aza-2'-deoxycytidine on Matrix Metalloproteinase Expression and Pancreatic Cancer Cell Invasiveness. Journal of the National Cancer Institute, 2003, 95, 327-330.	6.3	106
203	Diagnosing Pancreatic Cancer Using Methylation Specific PCR Analysis. Cancer Biology and Therapy, 2003, 2, 79-84.	3.4	107
204	p16 Inactivation in Pancreatic Intraepithelial Neoplasias (PanlNs) Arising in Patients With Chronic Pancreatitis. American Journal of Surgical Pathology, 2003, 27, 1495-1501.	3.7	104
205	Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 2003, 63, 3735-42.	0.9	267
206	Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 2003, 63, 4158-66.	0.9	238
207	Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Research, 2003, 63, 8614-22.	0.9	336
208	Immunohistochemical Validation of a Novel Epithelial and a Novel Stromal Marker of Pancreatic Ductal Adenocarcinoma Identified by Global Expression Microarrays. American Journal of Clinical Pathology, 2002, 118, 52-59.	0.7	124
209	Aberrant Methylation of the 5' CpG Island of TSLC1 Is Common in Pancreatic Ductal Adenocarcinoma and Is First Manifest in High-Grade PanlNs. Cancer Biology and Therapy, 2002, 1, 293-296.	3.4	112
210	Aberrant Methylation of Preproenkephalin and p16 Genes in Pancreatic Intraepithelial Neoplasia and Pancreatic Ductal Adenocarcinoma. American Journal of Pathology, 2002, 160, 1573-1581.	3.8	205
211	Discovery of Novel Tumor Markers of Pancreatic Cancer using Global Gene Expression Technology. American Journal of Pathology, 2002, 160, 1239-1249.	3.8	271
212	Overexpression of S100A4 in Pancreatic Ductal Adenocarcinomas Is Associated with Poor Differentiation and DNA Hypomethylation. American Journal of Pathology, 2002, 160, 45-50.	3.8	203
213	Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology, 2002, 123, 365-372.	1.3	124
214	Early detection of pancreatic carcinoma. Hematology/Oncology Clinics of North America, 2002, 16, 37-52.	2.2	130
215	Phenotypic variation in eight extendedCDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families. Cancer, 2002, 94, 84-96.	4.1	221
216	Aberrant CpG island methylation in cancer cell lines arises in the primary cancers from which they were derived. Oncogene, 2002, 21, 2114-2117.	5.9	49

#	Article	IF	CITATIONS
217	Pancreatic cancer. Current Problems in Cancer, 2002, 26, 176-275.	2.0	268
218	Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Research, 2002, 62, 1868-75.	0.9	233
219	STK11/LKB1 Peutz-Jeghers Gene Inactivation in Intraductal Papillary-Mucinous Neoplasms of the Pancreas. American Journal of Pathology, 2001, 159, 2017-2022.	3.8	251
220	Nuclear Localization of Dpc4 (Madh4, Smad4) in Colorectal Carcinomas and Relation to Mismatch Repair/Transforming Growth Factor- \hat{l}^2 Receptor Defects. American Journal of Pathology, 2001, 158, 537-542.	3.8	25
221	Can we screen high-risk individuals to detect early pancreatic carcinoma?. Journal of Surgical Oncology, 2000, 74, 243-248.	1.7	62
222	Genetic, Immunohistochemical, and Clinical Features of Medullary Carcinoma of the Pancreas. American Journal of Pathology, 2000, 156, 1641-1651.	3.8	263
223	BRCA2 Is Inactivated Late in the Development of Pancreatic Intraepithelial Neoplasia. American Journal of Pathology, 2000, 156, 1767-1771.	3.8	192
224	Genetic counseling and testing for germline p16 mutations in two pancreatic cancer–prone families. Gastroenterology, 2000, 119, 1756-1760.	1.3	30
225	Germline and Somatic Mutations of the STK11/LKB1 Peutz-Jeghers Gene in Pancreatic and Biliary Cancers. American Journal of Pathology, 1999, 154, 1835-1840.	3.8	380
226	Molecular genetics and related developments in pancreatic cancer. Current Opinion in Gastroenterology, 1999, 15, 404.	2.3	20
227	Tumor-Suppressor genes in pancreatic cancer. Journal of Hepato-Biliary-Pancreatic Surgery, 1998, 5, 383-391.	2.0	40