Keiji Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11067855/publications.pdf Version: 2024-02-01

Κειμ Τλνιλκλ

#	Article	IF	CITATIONS
1	The effect of nutrient deprivation on proteasome activity in 4-week-old mice and 24-week-old mice. Journal of Nutritional Biochemistry, 2022, , 108993.	1.9	0
2	TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Molecular Cell, 2021, 81, 1411-1424.e7.	4.5	43
3	Loss of peptide: <i>N</i> -glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
4	Mammalian BCAS3 and C16orf70 associate with the phagophore assembly site in response to selective and non-selective autophagy. Autophagy, 2021, 17, 2011-2036.	4.3	6
5	Unfolding is the driving force for mitochondrial import and degradation of the Parkinson's disease-related protein DJ-1. Journal of Cell Science, 2021, 134, .	1.2	3
6	Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice. Neurobiology of Disease, 2020, 136, 104717.	2.1	56
7	A substrate-trapping strategy to find E3 ubiquitin ligase substrates identifies Parkin and TRIM28 targets. Communications Biology, 2020, 3, 592.	2.0	21
8	The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC. Nature Cell Biology, 2020, 22, 663-673.	4.6	63
9	The PINK1–Parkin axis: An Overview. Neuroscience Research, 2020, 159, 9-15.	1.0	94
10	Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature, 2020, 578, 296-300.	13.7	204
11	Molecular bases for HOIPINs-mediated inhibition of LUBAC and innate immune responses. Communications Biology, 2020, 3, 163.	2.0	38
12	Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. Journal of Cell Biology, 2020, 219, .	2.3	114
13	Fluctuations of Spleen Cytokine and Blood Lactate, Importance of Cellular Immunity in Host Defense Against Blood Stage Malaria Plasmodium yoelii. Frontiers in Immunology, 2019, 10, 2207.	2.2	6
14	Stepwise multipolyubiquitination of p53 by the E6AP-E6 ubiquitin ligase complex. Journal of Biological Chemistry, 2019, 294, 14860-14875.	1.6	15
15	Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. Journal of Biological Chemistry, 2019, 294, 10300-10314.	1.6	79
16	Molecular and Structural Basis of the Proteasome $\hat{I}\pm$ Subunit Assembly Mechanism Mediated by the Proteasome-Assembling Chaperone PAC3-PAC4 Heterodimer. International Journal of Molecular Sciences, 2019, 20, 2231.	1.8	15
17	Sugar-Recognizing Ubiquitin Ligases: Action Mechanisms and Physiology. Frontiers in Physiology, 2019, 10, 104.	1.3	20
18	Methods to measure ubiquitin chain length and linkage. Methods in Enzymology, 2019, 618, 105-133.	0.4	14

#	Article	IF	CITATIONS
19	Detection of ubiquitination activity and identification of ubiquitinated substrates using TR-TUBE. Methods in Enzymology, 2019, 618, 135-147.	0.4	6
20	Parkinâ€mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes. EMBO Reports, 2019, 20, e47728.	2.0	35
21	Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells. Cell Reports, 2019, 29, 2901-2916.e6.	2.9	27
22	Thymoproteasome and peptidic self. Immunogenetics, 2019, 71, 217-221.	1.2	12
23	Ub-ProT reveals global length and composition of protein ubiquitylation in cells. Nature Communications, 2018, 9, 524.	5.8	50
24	Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Scientific Reports, 2018, 8, 2813.	1.6	85
25	K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1401-E1408.	3.3	213
26	Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts. Scientific Reports, 2018, 8, 2644.	1.6	12
27	Cytosolic Nâ€Glycans: Triggers for Ubiquitination Directing Proteasomal and Autophagic Degradation. BioEssays, 2018, 40, 1700215.	1.2	11
28	<i>Atg9a</i> deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy, 2018, 14, 764-777.	4.3	82
29	Endosomal Rab cycles regulate Parkin-mediated mitophagy. ELife, 2018, 7, .	2.8	113
30	Reactive oxygen species upregulate expression of muscle atrophy-associated ubiquitin ligase Cbl-b in rat L6 skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2018, 314, C721-C731.	2.1	46
31	Structural insights into ubiquitin phosphorylation by PINK1. Scientific Reports, 2018, 8, 10382.	1.6	35
32	The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nature Immunology, 2018, 19, 923-931.	7.0	233
33	Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation. Protein Science, 2017, 26, 1080-1085.	3.1	12
34	Foxn1-β5t transcriptional axis controls CD8+ T-cell production in the thymus. Nature Communications, 2017, 8, 14419.	5.8	41
35	Purkinje Cells Are More Vulnerable to the Specific Depletion of Cathepsin D Than to That of Atg7. American Journal of Pathology, 2017, 187, 1586-1600.	1.9	15
36	InÂVivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome. Molecular Cell, 2017, 66, 488-502.e7.	4.5	111

#	Article	IF	CITATIONS
37	A novel approach to assess the ubiquitinâ€fold modifier 1â€system in cells. FEBS Letters, 2017, 591, 196-204.	1.3	28
38	Parkinson's disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro. Scientific Reports, 2017, 7, 12816.	1.6	41
39	Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30. Nature Structural and Molecular Biology, 2017, 24, 911-919.	3.6	61
40	Structure of the Dnmt1 Reader Module Complexed with a Unique Two-Mono-Ubiquitin Mark on Histone H3 Reveals the Basis for DNA Methylation Maintenance. Molecular Cell, 2017, 68, 350-360.e7.	4.5	124
41	Ubiquitination of exposed glycoproteins by SCF ^{FBXO27} directs damaged lysosomes for autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8574-8579.	3.3	96
42	Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nature Communications, 2017, 8, 159.	5.8	249
43	Inhibitory effects of local anesthetics on the proteasome and their biological actions. Scientific Reports, 2017, 7, 5079.	1.6	3
44	HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathogens, 2017, 13, e1006162.	2.1	30
45	A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production. JCI Insight, 2017, 2, .	2.3	6
46	The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Reports, 2016, 17, 300-316.	2.0	197
47	Unexpected mitochondrial matrix localization of Parkinson's diseaseâ€related <scp>DJ</scp> â€1 mutants but not wildâ€type <scp>DJ</scp> â€1. Genes To Cells, 2016, 21, 772-788.	0.5	21
48	Biallelic Variants in UBA5 Link Dysfunctional UFM1ÂUbiquitin-like Modifier Pathway to Severe Infantile-Onset Encephalopathy. American Journal of Human Genetics, 2016, 99, 683-694.	2.6	72
49	The K48-K63 Branched Ubiquitin Chain Regulates NF-κB Signaling. Molecular Cell, 2016, 64, 251-266.	4.5	241
50	p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nature Communications, 2016, 7, 12030.	5.8	253
51	Specialized proteasome subunits have an essential role in the thymic selection of CD8+ T cells. Nature Immunology, 2016, 17, 938-945.	7.0	46
52	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
53	The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1. Journal of Biological Chemistry, 2016, 291, 6218-6231.	1.6	23
54	Structural analysis of a function-associated loop mutant of the substrate-recognition domain of Fbs1 ubiquitin ligase. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 619-626.	0.4	6

#	Article	IF	CITATIONS
55	Mitochondrial Complexes I and II Are More Susceptible to Autophagy Deficiency in Mouse β-Cells. Endocrinology and Metabolism, 2015, 30, 65.	1.3	4
56	The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3. PLoS ONE, 2015, 10, e0140366.	1.1	13
57	Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity. Nature Communications, 2015, 6, 6780.	5.8	64
58	Conserved Mode of Interaction between Yeast Bro1 Family V Domains and YP(X) n L Motif-Containing Target Proteins. Eukaryotic Cell, 2015, 14, 976-982.	3.4	8
59	The significant role of autophagy in the granular layer in normal skin differentiation and hair growth. Archives of Dermatological Research, 2015, 307, 159-169.	1.1	46
60	Unconventional PINK1 localization mechanism to the outer membrane of depolarized mitochondria drives Parkin recruitment. Journal of Cell Science, 2015, 128, 964-78.	1.2	103
61	The unexpected role of polyubiquitin chains in the formation of fibrillar aggregates. Nature Communications, 2015, 6, 6116.	5.8	75
62	Thymoproteasomes produce unique peptide motifs for positive selection of CD8+ T cells. Nature Communications, 2015, 6, 7484.	5.8	73
63	A comprehensive method for detecting ubiquitinated substrates using TR-TUBE. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4630-4635.	3.3	97
64	Phosphorylated ubiquitin chain is the genuine Parkin receptor. Journal of Cell Biology, 2015, 209, 111-128.	2.3	217
65	Tagged tags engage disposal. Nature, 2015, 524, 294-295.	13.7	6
66	Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. Journal of Biological Chemistry, 2015, 290, 25199-25211.	1.6	50
67	TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8+ T cells. Nature Immunology, 2015, 16, 1069-1076.	7.0	57
68	Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Reports, 2015, 16, 192-201.	2.0	116
69	Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nature Genetics, 2015, 47, 31-38.	9.4	450
70	The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARÎ3. ELife, 2015, 4, e05615.	2.8	59
71	Phosphorylated ubiquitin chain is the genuine Parkin receptor. Journal of Experimental Medicine, 2015, 212, 2124OIA14.	4.2	0
72	The ESCRT-III Adaptor Protein Bro1 Controls Functions of Regulator for Free Ubiquitin Chains 1 (Rfu1) in Ubiquitin Homeostasis. Journal of Biological Chemistry, 2014, 289, 21760-21769.	1.6	11

#	Article	IF	CITATIONS
73	LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochemical and Biophysical Research Communications, 2014, 446, 309-315.	1.0	52
74	Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nature Communications, 2014, 5, 3396.	5.8	111
75	Backbone 1H, 13C, and 15N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomolecular NMR Assignments, 2014, 8, 383-386.	0.4	16
76	Structural Basis for Proteasome Formation Controlled by an Assembly Chaperone Nas2. Structure, 2014, 22, 731-743.	1.6	23
77	Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.	13.7	1,185
78	PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy, 2014, 10, 631-641.	4.3	44
79	Modification of ASC1 by UFM1 Is Crucial for ERα Transactivation and Breast Cancer Development. Molecular Cell, 2014, 56, 261-274.	4.5	156
80	Pba3–Pba4 heterodimer acts as a molecular matchmaker in proteasome α-ring formation. Biochemical and Biophysical Research Communications, 2014, 450, 1110-1114.	1.0	25
81	Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway. Journal of Biological Chemistry, 2014, 289, 24944-24955.	1.6	95
82	Dissection of the role of p62/Sqstm1 in activation of Nrf2 during xenophagy. FEBS Letters, 2014, 588, 822-828.	1.3	62
83	Proteostasis and neurodegeneration: The roles of proteasomal degradation and autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 197-204.	1.9	153
84	Spatial arrangement and functional role of α subunits of proteasome activator PA28 in hetero-oligomeric form. Biochemical and Biophysical Research Communications, 2013, 432, 141-145.	1.0	24
85	Involvement of Bag6 and the TRC pathway in proteasome assembly. Nature Communications, 2013, 4, 2234.	5.8	30
86	Endogenous Nitrated Nucleotide Is a Key Mediator of Autophagy and Innate Defense against Bacteria. Molecular Cell, 2013, 52, 794-804.	4.5	96
87	Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 2013, 51, 618-631.	4.5	880
88	Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2013, 436, 372-376.	1.0	19
89	Parkin-catalyzed Ubiquitin-Ester Transfer Is Triggered by PINK1-dependent Phosphorylation. Journal of Biological Chemistry, 2013, 288, 22019-22032.	1.6	173
90	A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment. Journal of Biological Chemistry, 2013, 288, 36372-36384.	1.6	168

#	Article	IF	CITATIONS
91	The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification. Biochemical and Biophysical Research Communications, 2013, 436, 223-229.	1.0	66
92	Proteasome Dysfunction Mediates Obesity-Induced Endoplasmic Reticulum Stress and Insulin Resistance in the Liver. Diabetes, 2013, 62, 811-824.	0.3	105
93	Aire-expressing thymic medullary epithelial cells originate from β5t-expressing progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9885-9890.	3.3	135
94	Different dynamic movements of wildâ€ŧype and pathogenic <scp>VCP</scp> s and their cofactors to damaged mitochondria in a <scp>P</scp> arkinâ€mediated mitochondrial quality control system. Genes To Cells, 2013, 18, 1131-1143.	0.5	35
95	The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons. Genes To Cells, 2013, 18, 672-681.	0.5	38
96	Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO Journal, 2013, 32, 2463-2476.	3.5	109
97	The Proteasome: From Basic Mechanisms to Emerging Roles. Keio Journal of Medicine, 2013, 62, 1-12.	0.5	50
98	UfSP1 Peptidase (Ufm1-specific Peptidase 1). , 2013, , 2134-2137.		0
99	Structural Basis for Specific Recognition of Rpt1p, an ATPase Subunit of 26 S Proteasome, by Proteasome-dedicated Chaperone Hsm3p. Journal of Biological Chemistry, 2012, 287, 12172-12182.	1.6	30
100	Motor Neuron-specific Disruption of Proteasomes, but Not Autophagy, Replicates Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2012, 287, 42984-42994.	1.6	162
101	PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nature Communications, 2012, 3, 1016.	5.8	465
102	Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1479-1484.	3.3	114
103	Smad7-deficient mice show growth retardation with reduced viability. Journal of Biochemistry, 2012, 151, 621-631.	0.9	28
104	Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20572-20577.	3.3	72
105	Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase. Biochemical and Biophysical Research Communications, 2012, 428, 197-202.	1.0	65
106	The proteasome: molecular machinery and pathophysiological roles. Biological Chemistry, 2012, 393, 217-234.	1.2	103
107	Antiangiogenic Tumor Therapy by DNA Vaccine Inducing Aquaporin-1–Specific CTL Based on Ubiquitin–Proteasome System in Mice. Journal of Immunology, 2012, 189, 1618-1626.	0.4	15
108	Assembly and Function of the Proteasome. Methods in Molecular Biology, 2012, 832, 315-337.	0.4	88

#	Article	IF	CITATIONS
109	Decreased Proteasomal Activity Causes Age-Related Phenotypes and Promotes the Development of Metabolic Abnormalities. American Journal of Pathology, 2012, 180, 963-972.	1.9	158
110	Rescue of growth defects of yeast cdc48 mutants by pathogenic IBMPFD-VCPs. Journal of Structural Biology, 2012, 179, 93-103.	1.3	6
111	Insulin/insulin-like growth factor (IGF) stimulation abrogates an association between a deubiquitinating enzyme USP7 and insulin receptor substrates (IRSs) followed by proteasomal degradation of IRSs. Biochemical and Biophysical Research Communications, 2012, 423, 122-127.	1.0	33
112	Proteasomal Degradation Resolves Competition between Cell Polarization and Cellular Wound Healing. Cell, 2012, 150, 151-164.	13.5	92
113	β5t-containing thymoproteasome: specific expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells. Current Opinion in Immunology, 2012, 24, 92-98.	2.4	49
114	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
115	Loss of autophagy promotes murine acetaminophen hepatotoxicity. Journal of Gastroenterology, 2012, 47, 433-443.	2.3	62
116	Suppression of autophagy sensitizes Kupffer cells to endotoxin. Hepatology Research, 2012, 42, 1112-1118.	1.8	22
117	New crystal structure of the proteasome-dedicated chaperone Rpn14 at 1.6â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 517-521.	0.7	2
118	LOSS OF AUTOPHAGY ENHANCES DIETHYLNITROSAMINE-INDUCED LIVER INJURY. JuntendoÌ,, Igaku, 2012, 58, 319-324.	0.1	0
119	Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. Journal of Cell Biology, 2011, 193, 275-284.	2.3	520
120	Autophagy-deficient mice develop multiple liver tumors. Genes and Development, 2011, 25, 795-800.	2.7	1,094
121	Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-κB activation. Archives of Biochemistry and Biophysics, 2011, 506, 223-235.	1.4	79
122	Skp1 stabilizes the conformation of F-box proteins. Biochemical and Biophysical Research Communications, 2011, 410, 24-28.	1.0	26
123	Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin. Journal of Biological Chemistry, 2011, 286, 31864-31874.	1.6	117
124	The Catalytic Activity of Ubp6 Enhances Maturation of the Proteasomal Regulatory Particle. Molecular Cell, 2011, 42, 637-649.	4.5	64
125	A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. Journal of Clinical Investigation, 2011, 121, 4150-4160.	3.9	258
126	SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature, 2011, 471, 633-636.	13.7	557

#	Article	IF	CITATIONS
127	Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit β5t. European Journal of Immunology, 2011, 41, 1278-1287.	1.6	73
128	The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice. Nature Communications, 2011, 2, 181.	5.8	124
129	Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy, 2011, 7, 727-736.	4.3	233
130	Akt Suppresses Retrograde Degeneration of Dopaminergic Axons by Inhibition of Macroautophagy. Journal of Neuroscience, 2011, 31, 2125-2135.	1.7	126
131	Structure of Ubiquitin-fold Modifier 1-specific Protease UfSP2. Journal of Biological Chemistry, 2011, 286, 10248-10257.	1.6	47
132	Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14914-14919.	3.3	288
133	Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. Journal of Experimental Medicine, 2011, 208, i12-i12.	4.2	1
134	Parkin Mediates Apparent E2-Independent Monoubiquitination In Vitro and Contains an Intrinsic Activity That Catalyzes Polyubiquitination. PLoS ONE, 2011, 6, e19720.	1.1	40
135	Recycling and Physiological Roles of Intracellular Proteins. Nihon EiyŕShokuryŕGakkai Shi = Nippon Eiyŕ ShokuryŕGakkaishi = Journal of Japanese Society of Nutrition and Food Science, 2011, 64, 221-228.	0.2	0
136	Crystal Structure of UbcH5bâ^¼Ubiquitin Intermediate: Insight into the Formation of the Self-Assembled E2â^¼Ub Conjugates. Structure, 2010, 18, 138-147.	1.6	90
137	Activity-Based Profiling Reveals Reactivity of the Murine Thymoproteasome-Specific Subunit β5t. Chemistry and Biology, 2010, 17, 795-801.	6.2	72
138	Thymoproteasome Shapes Immunocompetent Repertoire of CD8+ T Cells. Immunity, 2010, 32, 29-40.	6.6	172
139	Crystallization and preliminary X-ray characterization of the Skp1–Fbg3 complex. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 95-98.	0.7	2
140	p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes To Cells, 2010, 15, 887-900.	0.5	345
141	CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO Journal, 2010, 29, 2501-2514.	3.5	44
142	The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology, 2010, 12, 213-223.	4.6	1,933
143	The CD40-Autophagy Pathway Is Needed for Host Protection Despite IFN-Γ-Dependent Immunity and CD40 Induces Autophagy via Control of P21 Levels. PLoS ONE, 2010, 5, e14472.	1.1	65
144	PAC1 Gene Knockout Reveals an Essential Role of Chaperone-Mediated 20S Proteasome Biogenesis and Latent 20S Proteasomes in Cellular Homeostasis. Molecular and Cellular Biology, 2010, 30, 3864-3874.	1.1	37

#	Article	IF	CITATIONS
145	Regulatory mechanisms involved in the control of ubiquitin homeostasis. Journal of Biochemistry, 2010, 147, 793-798.	0.9	162
146	PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 2010, 189, 211-221.	2.3	1,600
147	Crystal Structure of Yeast Rpn14, a Chaperone of the 19 S Regulatory Particle of the Proteasome. Journal of Biological Chemistry, 2010, 285, 15159-15166.	1.6	20
148	Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15856-15861.	3.3	140
149	Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. Journal of Cell Biology, 2010, 191, 537-552.	2.3	156
150	A Novel Type of E3 Ligase for the Ufm1 Conjugation System. Journal of Biological Chemistry, 2010, 285, 5417-5427.	1.6	176
151	Uncovering the roles of PINK1 and Parkin in mitophagy. Autophagy, 2010, 6, 952-954.	4.3	41
152	Does Impairment of the Ubiquitin-Proteasome System or the Autophagy-Lysosome Pathway Predispose Individuals to Neurodegenerative Disorders such as Parkinson's Disease?. Journal of Alzheimer's Disease, 2010, 19, 1-9.	1.2	89
153	Lectin-like ERAD players in ER and cytosol. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 172-180.	1.1	53
154	Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi. Biochemical and Biophysical Research Communications, 2010, 392, 277-282.	1.0	12
155	Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2010, 396, 1048-1053.	1.0	63
156	Role of thymic cortex-specific self-peptides in positive selection of T cells. Seminars in Immunology, 2010, 22, 287-293.	2.7	48
157	Genetic Evidence Linking Age-Dependent Attenuation of the 26S Proteasome with the Aging Process. Molecular and Cellular Biology, 2009, 29, 1095-1106.	1.1	233
158	17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Human Molecular Genetics, 2009, 18, 898-910.	1.4	109
159	Ubiquitin Ligase Cbl-b Is a Negative Regulator for Insulin-Like Growth Factor 1 Signaling during Muscle Atrophy Caused by Unloading. Molecular and Cellular Biology, 2009, 29, 4798-4811.	1.1	165
160	The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1496-1507.	1.9	150
161	Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to <i>Toxoplasma gondii</i> infection. European Journal of Immunology, 2009, 39, 3385-3394.	1.6	38
162	Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO Journal, 2009, 28, 359-371.	3.5	220

#	Article	IF	CITATIONS
163	Autophagy regulates lipid metabolism. Nature, 2009, 458, 1131-1135.	13.7	3,149
164	Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biology, 2009, 11, 123-132.	4.6	870
165	Molecular mechanisms of proteasome assembly. Nature Reviews Molecular Cell Biology, 2009, 10, 104-115.	16.1	461
166	Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to Toxoplasma gondii infection. European Journal of Immunology, 2009, , .	1.6	1
167	An Inhibitor of a Deubiquitinating Enzyme Regulates Ubiquitin Homeostasis. Cell, 2009, 137, 549-559.	13.5	79
168	Multiple Proteasome-Interacting Proteins Assist the Assembly of the Yeast 19S Regulatory Particle. Cell, 2009, 137, 900-913.	13.5	157
169	Assembly Pathway of the Mammalian Proteasome Base Subcomplex Is Mediated by Multiple Specific Chaperones. Cell, 2009, 137, 914-925.	13.5	182
170	The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochemical and Biophysical Research Communications, 2009, 382, 419-423.	1.0	214
171	Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochemical and Biophysical Research Communications, 2009, 390, 855-860.	1.0	40
172	The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex. Journal of Molecular Biology, 2009, 394, 320-328.	2.0	50
173	Exclusive expression of proteasome subunit \hat{l}^2 5t in the human thymic cortex. Blood, 2009, 113, 5186-5191.	0.6	63
174	The proteasome: Overview of structure and functions. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 12-36.	1.6	637
175	Thymoproteasome: probable role in generating positively selecting peptides. Current Opinion in Immunology, 2008, 20, 192-196.	2.4	105
176	Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes and Infection, 2008, 10, 241-250.	1.0	19
177	Dissecting \hat{I}^2 -ring assembly pathway of the mammalian 20S proteasome. EMBO Journal, 2008, 27, 2204-2213.	3.5	134
178	A new ubiquitin ligase involved in p57 ^{KIP2} proteolysis regulates osteoblast cell differentiation. EMBO Reports, 2008, 9, 878-884.	2.0	34
179	Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature, 2008, 456, 264-268.	13.7	1,837
180	Two hands for degradation. Nature, 2008, 453, 460-461.	13.7	15

#	Article	IF	CITATIONS
181	Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nature Structural and Molecular Biology, 2008, 15, 228-236.	3.6	101
182	Modest cortex and promiscuous medulla for thymic repertoire formation. Trends in Immunology, 2008, 29, 251-255.	2.9	30
183	Structural Basis for Sorting Mechanism of p62 in Selective Autophagy. Journal of Biological Chemistry, 2008, 283, 22847-22857.	1.6	665
184	Comprehensive proteomics analysis of autophagy-deficient mouse liver. Biochemical and Biophysical Research Communications, 2008, 368, 643-649.	1.0	39
185	Mammalian 26S Proteasomes Remain Intact during Protein Degradation. Cell, 2008, 135, 355-365.	13.5	36
186	Autophagy Is Important in Islet Homeostasis and Compensatory Increase of Beta Cell Mass in Response to High-Fat Diet. Cell Metabolism, 2008, 8, 325-332.	7.2	680
187	Loss of Autophagy Diminishes Pancreatic \hat{I}^2 Cell Mass and Function with Resultant Hyperglycemia. Cell Metabolism, 2008, 8, 318-324.	7.2	586
188	Inhibition of Autophagy Prevents Hippocampal Pyramidal Neuron Death after Hypoxic-Ischemic Injury. American Journal of Pathology, 2008, 172, 454-469.	1.9	443
189	Chapter 3 Thymic Microenvironments for T-Cell Repertoire Formation. Advances in Immunology, 2008, 99, 59-94.	1.1	75
190	Gp78 Cooperates with RMA1 in Endoplasmic Reticulum-associated Degradation of CFTRΔF508. Molecular Biology of the Cell, 2008, 19, 1328-1336.	0.9	212
191	c-Cbl-Dependent Monoubiquitination and Lysosomal Degradation of gp130. Molecular and Cellular Biology, 2008, 28, 4805-4818.	1.1	76
192	Human T-cell Leukemia Virus Type 1 HBZ Protein Bypasses the Targeting Function of Ubiquitination. Journal of Biological Chemistry, 2008, 283, 34273-34282.	1.6	30
193	Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy, 2008, 4, 1063-1066.	4.3	206
194	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
195	Hsp90-mediated Assembly of the 26 S Proteasome Is Involved in Major Histocompatibility Complex Class I Antigen Processing. Journal of Biological Chemistry, 2008, 283, 28060-28065.	1.6	40
196	Structural Basis for Ufm1 Processing by UfSP1. Journal of Biological Chemistry, 2008, 283, 14893-14900.	1.6	42
197	Allele-Selective Effect of PA28 in MHC Class I Antigen Processing. Journal of Immunology, 2008, 181, 1655-1664.	0.4	23
198	The Atg8 Conjugation System Is Indispensable for Proper Development of Autophagic Isolation Membranes in Mice. Molecular Biology of the Cell, 2008, 19, 4762-4775.	0.9	424

#	Article	IF	CITATIONS
199	Critical role of PA28Â in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1661-1666.	3.3	192
200	Structural basis for the selection of glycosylated substrates by SCFFbs1 ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5777-5781.	3.3	80
201	TBP-interacting Protein 120B (TIP120B)/Cullin-associated and Neddylation-dissociated 2 (CAND2) Inhibits SCF-dependent Ubiquitination of Myogenin and Accelerates Myogenic Differentiation. Journal of Biological Chemistry, 2007, 282, 9017-9028.	1.6	43
202	Involvement of the PA28Î ³ -Dependent Pathway in Insulin Resistance Induced by Hepatitis C Virus Core Protein. Journal of Virology, 2007, 81, 1727-1735.	1.5	121
203	Rpn10-Mediated Degradation of Ubiquitinated Proteins Is Essential for Mouse Development. Molecular and Cellular Biology, 2007, 27, 6629-6638.	1.1	92
204	The Assembly Pathway of the 19S Regulatory Particle of the Yeast 26S Proteasome. Molecular Biology of the Cell, 2007, 18, 569-580.	0.9	94
205	Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14489-14494.	3.3	560
206	A Neural-specific F-box Protein Fbs1 Functions as a Chaperone Suppressing Glycoprotein Aggregation. Journal of Biological Chemistry, 2007, 282, 7137-7144.	1.6	32
207	Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase. Biochemical and Biophysical Research Communications, 2007, 362, 712-716.	1.0	22
208	Crystal structure of Ufc1, the Ufm1-conjugating enzyme. Biochemical and Biophysical Research Communications, 2007, 362, 1079-1084.	1.0	38
209	SCRAPPER-Dependent Ubiquitination of Active Zone Protein RIM1 Regulates Synaptic Vesicle Release. Cell, 2007, 130, 943-957.	13.5	191
210	Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice. Cell, 2007, 131, 1149-1163.	13.5	1,925
211	Unlocking the Proteasome Door. Molecular Cell, 2007, 27, 865-867.	4.5	16
212	Regulation of CD8+ T Cell Development by Thymus-Specific Proteasomes. Science, 2007, 316, 1349-1353.	6.0	504
213	Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nature Structural and Molecular Biology, 2007, 14, 167-168.	3.6	105
214	Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450, 1253-1257.	13.7	1,181
215	Two Novel Ubiquitin-fold Modifier 1 (Ufm1)-specific Proteases, UfSP1 and UfSP2. Journal of Biological Chemistry, 2007, 282, 5256-5262.	1.6	135
216	Analysis of Knock-Out Mice to Determine the Role of HPC-1/Syntaxin 1A in Expressing Synaptic Plasticity. Journal of Neuroscience, 2006, 26, 5767-5776.	1.7	112

#	Article	IF	CITATIONS
217	Chemical structure–dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radical Research, 2006, 40, 21-30.	1.5	16
218	Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochemical and Biophysical Research Communications, 2006, 343, 21-26.	1.0	55
219	The Crystal Structure of Human Atg4b, a Processing and De-conjugating Enzyme for Autophagosome-forming Modifiers. Journal of Molecular Biology, 2006, 355, 612-618.	2.0	79
220	Evolutionally Conserved Intermediates Between Ubiquitin and NEDD8. Journal of Molecular Biology, 2006, 363, 395-404.	2.0	31
221	Cooperation of Multiple Chaperones Required for the Assembly ofÂMammalian 20S Proteasomes. Molecular Cell, 2006, 24, 977-984.	4.5	124
222	SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nature Cell Biology, 2006, 8, 1424-1431.	4.6	69
223	Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441, 880-884.	13.7	3,209
224	14-3-3η is a novel regulator of parkin ubiquitin ligase. EMBO Journal, 2006, 25, 211-221.	3.5	107
225	A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO Journal, 2006, 25, 4524-4536.	3.5	219
226	A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO Journal, 2006, 25, 4877-4887.	3.5	663
227	The involvement of immunoproteasomes in induction of MHC class I-restricted immunity targeting Toxoplasma SAG1. Microbes and Infection, 2006, 8, 1045-1053.	1.0	22
228	Decline of striatal dopamine release in parkin-deficient mice shown by ex vivo autoradiography. Journal of Neuroscience Research, 2006, 84, 1350-1357.	1.3	57
229	Proteasomal Ubiquitin Receptor RPN-10 Controls Sex Determination in Caenorhabditis elegans. Molecular Biology of the Cell, 2006, 17, 5356-5371.	0.9	52
230	The ubiquitin–proteasome system plays essential roles in presenting an 8-mer CTL epitope expressed in APC to corresponding CD8+ T cells. International Immunology, 2006, 18, 679-687.	1.8	19
231	Diverse Effects of Pathogenic Mutations of Parkin That Catalyze Multiple Monoubiquitylation in Vitro. Journal of Biological Chemistry, 2006, 281, 3204-3209.	1.6	166
232	BTB Domain-containing Speckle-type POZ Protein (SPOP) Serves as an Adaptor of Daxx for Ubiquitination by Cul3-based Ubiquitin Ligase. Journal of Biological Chemistry, 2006, 281, 12664-12672.	1.6	178
233	Cdc37 Interacts with the Glycine-Rich Loop of Hsp90 Client Kinases. Molecular and Cellular Biology, 2006, 26, 3378-3389.	1.1	42
234	Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals. Journal of Biological Chemistry, 2006, 281, 4035-4041.	1.6	206

#	Article	IF	CITATIONS
235	Autophagy and Neurodegeneration. Autophagy, 2006, 2, 315-317.	4.3	69
236	Free Radical Analysis in Patients with the Limbs or the Pelvic Injuries: a ex vivo ESR Study. Nihon Kyukyu Igakukai Zasshi, 2006, 17, 120-122.	0.0	0
237	In vivoevidence of CHIP up-regulation attenuating tau aggregation. Journal of Neurochemistry, 2005, 94, 1254-1263.	2.1	186
238	Multiple roles of Rbx1 in the VBC-Cul2 ubiquitin ligase complex. Genes To Cells, 2005, 10, 679-691.	0.5	18
239	Glycoproteinâ€specific ubiquitin ligases recognize N â€glycans in unfolded substrates. EMBO Reports, 2005, 6, 239-244.	2.0	80
240	A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature, 2005, 437, 1381-1385.	13.7	218
241	Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe. FEBS Journal, 2005, 272, 6373-6386.	2.2	39
242	Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169, 425-434.	2.3	2,180
243	Co-chaperone CHIP Associates with Expanded Polyglutamine Protein and Promotes Their Degradation by Proteasomes. Journal of Biological Chemistry, 2005, 280, 11635-11640.	1.6	283
244	Phosphorylated lκBα is a component of Lewy body of Parkinson's disease. Biochemical and Biophysical Research Communications, 2005, 331, 309-317.	1.0	12
245	Common anti-apoptotic roles of parkin and α-synuclein in human dopaminergic cells. Biochemical and Biophysical Research Communications, 2005, 332, 233-240.	1.0	74
246	DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair, 2005, 4, 537-545.	1.3	65
247	Large―and Smallâ€6cale Purification of Mammalian 26S Proteasomes. Methods in Enzymology, 2005, 399, 227-240.	0.4	15
248	Cullin-based Ubiquitin Ligase and its Control by NEDD8-conjugating System. Current Protein and Peptide Science, 2004, 5, 177-184.	0.7	70
249	Physical and Functional Interaction between Dorfin and Valosin-containing Protein That Are Colocalized in Ubiquitylated Inclusions in Neurodegenerative Disorders. Journal of Biological Chemistry, 2004, 279, 51376-51385.	1.6	67
250	The Fusion Oncoprotein PML-RARα Induces Endoplasmic Reticulum (ER)-associated Degradation of N-CoR and ER Stress. Journal of Biological Chemistry, 2004, 279, 11814-11824.	1.6	52
251	Ubiquitin-fusion degradation pathway plays an indispensable role in naked DNA vaccination with a chimeric gene encoding a syngeneic cytotoxic T lymphocyte epitope of melanocyte and green fluorescent protein. Immunology, 2004, 112, 567-574.	2.0	28
252	A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO Journal, 2004, 23, 1977-1986.	3.5	300

#	Article	IF	CITATIONS
253	Ligand-dependent switching of ubiquitin–proteasome pathways for estrogen receptor. EMBO Journal, 2004, 23, 4813-4823.	3.5	134
254	Structural basis of sugar-recognizing ubiquitin ligase. Nature Structural and Molecular Biology, 2004, 11, 365-370.	3.6	82
255	Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes To Cells, 2004, 9, 865-875.	0.5	147
256	Ubiquitin, proteasome and parkin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1695, 235-247.	1.9	108
257	Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes and Infection, 2004, 6, 791-798.	1.0	69
258	The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO Journal, 2003, 22, 3557-3567.	3.5	209
259	A palmitoylated RING finger ubiquitin ligase and its homologue in the brain membranes. Journal of Neurochemistry, 2003, 86, 749-762.	2.1	25
260	Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitinâ€ŀike domain. EMBO Reports, 2003, 4, 301-306.	2.0	233
261	An Endogenous Electrophile that Modulates the Regulatory Mechanism of Protein Turnover: Inhibitory Effects of 15-Deoxy-î"12,14-prostaglandin J2 on Proteasome. Biochemistry, 2003, 42, 13960-13968.	1.2	55
262	But1 and But2 proteins bind to Uba3, a catalytic subunit of E1 for neddylation, in fission yeast. Biochemical and Biophysical Research Communications, 2003, 311, 691-695.	1.0	7
263	Dissecting Various ATP-Dependent Steps Involved in Proteasomal Degradation. Molecular Cell, 2003, 11, 3-5.	4.5	29
264	CHIP: a quality-control E3 ligase collaborating with molecular chaperones. International Journal of Biochemistry and Cell Biology, 2003, 35, 572-578.	1.2	207
265	Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proceedings of the United States of America, 2003, 100, 11285-11290.	3.3	476
266	Parkin Cleaves Intracellular α-Synuclein Inclusions via the Activation of Calpain. Journal of Biological Chemistry, 2003, 278, 41890-41899.	1.6	68
267	Sterol Regulatory Element-binding Proteins Are Negatively Regulated through SUMO-1 Modification Independent of the Ubiquitin/26 S Proteasome Pathway. Journal of Biological Chemistry, 2003, 278, 16809-16819.	1.6	100
268	Conditional Knockdown of Proteasomes Results in Cell-cycle Arrest and Enhanced Expression of Molecular Chaperones Hsp70 and Hsp40 in Chicken DT40 Cells. Journal of Biological Chemistry, 2003, 278, 16237-16243.	1.6	8
269	Fbs2 Is a New Member of the E3 Ubiquitin Ligase Family That Recognizes Sugar Chains. Journal of Biological Chemistry, 2003, 278, 43877-43884.	1.6	156
270	Proteasome Activator PA28Î ³ -Dependent Nuclear Retention and Degradation of Hepatitis C Virus Core Protein. Journal of Virology, 2003, 77, 10237-10249.	1.5	143

#	Article	IF	CITATIONS
271	p57Kip2 Regulates Actin Dynamics by Binding and Translocating LIM-kinase 1 to the Nucleus. Journal of Biological Chemistry, 2003, 278, 52919-52923.	1.6	96
272	Ubiquitin Ligase Activities of Bombyx mori Nucleopolyhedrovirus RING Finger Proteins. Journal of Virology, 2003, 77, 923-930.	1.5	69
273	Proteasomes and Molecular Chaperones : Cellular Machinery Responsible for Folding and Destruction of Unfolded Proteins. Cell Cycle, 2003, 2, 584-588.	1.3	68
274	Parkin Mutations (Park 2). , 2003, , 305-314.		0
275	Antagonistic regulation of myogenesis by two deubiquitinating enzymes, UBP45 and UBP69. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9733-9738.	3.3	44
276	Dorfin Ubiquitylates Mutant SOD1 and Prevents Mutant SOD1-mediated Neurotoxicity. Journal of Biological Chemistry, 2002, 277, 36793-36798.	1.6	174
277	The 26S Proteasome Rpn10 Gene Encoding Splicing Isoforms: Evolutional Conservation of the Genomic Organization in Vertebrates. Biological Chemistry, 2002, 383, 1257-61.	1.2	10
278	Cell-Cycle Dependent Dynamic Change of 26S Proteasome Distribution in Tobacco BY-2 Cells. Plant and Cell Physiology, 2002, 43, 604-613.	1.5	33
279	Two Distinct Pathways Mediated by PA28 and hsp90 in Major Histocompatibility Complex Class I Antigen Processing. Journal of Experimental Medicine, 2002, 196, 185-196.	4.2	68
280	Desumoylation Activity of Axam, a Novel Axin-Binding Protein, Is Involved in Downregulation of β-Catenin. Molecular and Cellular Biology, 2002, 22, 3803-3819.	1.1	64
281	Torbafylline (HWA 448) inhibits enhanced skeletal muscle ubiquitin‒proteasome-dependent proteolysis in cancer and septic rats. Biochemical Journal, 2002, 361, 185.	1.7	46
282	Structure Determination of the Constitutive 20S Proteasome from Bovine Liver at 2.75 A Resolution. Journal of Biochemistry, 2002, 131, 171-173.	0.9	41
283	26 S proteasomes function as stable entities 1 1Edited by R. Huber. Journal of Molecular Biology, 2002, 315, 627-636.	2.0	60
284	The Structure of the Mammalian 20S Proteasome at 2.75 Ã Resolution. Structure, 2002, 10, 609-618.	1.6	490
285	Spatial distribution of the 26S proteasome in meristematic tissues and primordia of rice (Oryza sativa) Tj ETQq1	1 0.7843 1.6	14 ₁ gBT /Ove
286	Selective Proteasomal Dysfunction in the Hippocampal CA1 Region after Transient Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 705-710.	2.4	84
287	E3 ubiquitin ligase that recognizes sugar chains. Nature, 2002, 418, 438-442.	13.7	341
288	Etiology, Pathogenesis, and Genetics of Parkinson's Disease. Advances in Behavioral Biology, 2002, , 239-244.	0.2	0

#	Article	IF	CITATIONS
289	Ubiquitin-Proteasome Pathway is a Key to Understanding of Nigral Degeneration in Autosomal Recessive Juvenile Parkinson's Disease. Advances in Behavioral Biology, 2002, , 291-296.	0.2	0
290	Quaternary Structure of the ATPase Complex of Human 26S Proteasomes Determined by Chemical Cross-Linking. Archives of Biochemistry and Biophysics, 2001, 386, 89-94.	1.4	71
291	A Novel Centrosomal RING-Finger Protein, Dorfin, Mediates Ubiquitin Ligase Activity. Biochemical and Biophysical Research Communications, 2001, 281, 706-713.	1.0	69
292	Control of ll̂ºBα proteolysis by the ubiquitin-proteasome pathway. Biochimie, 2001, 83, 351-356.	1.3	84
293	Smurf1 Interacts with Transforming Growth Factor-β Type I Receptor through Smad7 and Induces Receptor Degradation. Journal of Biological Chemistry, 2001, 276, 12477-12480.	1.6	747
294	Parkin and Parkinson's disease. Current Opinion in Neurology, 2001, 14, 477-482.	1.8	104
295	Nucleotide sequence analysis of the â ⁻¹ ⁄435-kb segment containing interferon-Î ³ -inducible mouse proteasome activator genes. Immunogenetics, 2001, 53, 119-129.	1.2	13
296	Parkin is linked to the ubiquitin pathway. Journal of Molecular Medicine, 2001, 79, 482-494.	1.7	69
297	Developmental changes in the expression of parkin and UbcR7, a parkin-interacting and ubiquitin-conjugating enzyme, in rat brain. Journal of Neurochemistry, 2001, 77, 1561-1568.	2.1	14
298	CHIP is a chaperoneâ€dependent E3 ligase that ubiquitylates unfolded protein. EMBO Reports, 2001, 2, 1133-1138.	2.0	516
299	Ligand-dependent Degradation of Smad3 by a Ubiquitin Ligase Complex of ROC1 and Associated Proteins. Molecular Biology of the Cell, 2001, 12, 1431-1443.	0.9	198
300	The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. Journal of Cell Biology, 2001, 155, 571-580.	2.3	197
301	Anti-atherogenic Antioxidants Regulate the Expression and Function of Proteasome α-Type Subunits in Human Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 40497-40501.	1.6	22
302	Smad-mediated Transcription Is Required for Transforming Growth Factor-β1-induced p57Kip2 Proteolysis in Osteoblastic Cells. Journal of Biological Chemistry, 2001, 276, 10700-10705.	1.6	51
303	Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochemical Journal, 2000, 346, 155.	1.7	99
304	Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochemical Journal, 2000, 346, 155-161.	1.7	269
305	Tissue-specificity, functional characterization and subcellular localization of a rat ubiquitin-specific processing protease, UBP109, whose mRNA expression is developmentally regulated. Biochemical Journal, 2000, 349, 443-453.	1.7	11
306	Tissue-specificity, functional characterization and subcellular localization of a rat ubiquitin-specific processing protease, UBP109, whose mRNA expression is developmentally regulated. Biochemical Journal, 2000, 349, 443.	1.7	9

#	Article	IF	CITATIONS
307	Autosomal recessive juvenile parkinsonism: A key to understanding nigral degeneration in sporadic Parkinson's disease. Neuropathology, 2000, 20, 85-90.	0.7	91
308	Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics, 2000, 25, 302-305.	9.4	1,894
309	T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature, 2000, 408, 600-605.	13.7	1,247
310	Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO Journal, 2000, 19, 4144-4153.	3.5	45
311	A New SUMO-1-specific Protease, SUSP1, That Is Highly Expressed in Reproductive Organs. Journal of Biological Chemistry, 2000, 275, 14102-14106.	1.6	127
312	N α-Acetylation and Proteolytic Activity of the Yeast 20 S Proteasome. Journal of Biological Chemistry, 2000, 275, 4635-4639.	1.6	110
313	cDNA Cloning, Expression, and Functional Characterization of PI31, a Proline-rich Inhibitor of the Proteasome. Journal of Biological Chemistry, 2000, 275, 18557-18565.	1.6	122
314	Hybrid Proteasomes. Journal of Biological Chemistry, 2000, 275, 14336-14345.	1.6	312
315	Homodimer of Two F-box Proteins βTrCP1 or βTrCP2 Binds to lκBα for Signal-dependent Ubiquitination. Journal of Biological Chemistry, 2000, 275, 2877-2884.	1.6	121
316	A nonproteolytic function of the proteasome is required for the dissociation of Cdc2 and cyclin B at the end of M phase. Genes and Development, 2000, 14, 2344-2357.	2.7	65
317	Degradation of Ornithine Decarboxylase by the 26S Proteasome. Biochemical and Biophysical Research Communications, 2000, 267, 1-6.	1.0	81
318	Tissue Distribution of Constitutive Proteasomes, Immunoproteasomes, and PA28 in Rats. Biochemical and Biophysical Research Communications, 2000, 277, 348-354.	1.0	121
319	Nob1p, a new essential protein, associates with the 26S proteasome of growing Saccharomyces cerevisiae cells. Gene, 2000, 243, 37-45.	1.0	47
320	The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division inEscherichia coli. FEBS Letters, 2000, 477, 224-229.	1.3	53
321	A Critical Role for the Proteasome Activator PA28 in the Hsp90-dependent Protein Refolding. Journal of Biological Chemistry, 2000, 275, 9055-9061.	1.6	72
322	Proteasomes and MHC class I-peptide generation. , 2000, , 203-212.		0
323	p57Kip2 Is Degraded through the Proteasome in Osteoblasts Stimulated to Proliferation by Transforming Growth Factor β1. Journal of Biological Chemistry, 1999, 274, 12197-12200.	1.6	77
324	Growth Retardation in Mice Lacking the Proteasome Activator PA28Î ³ . Journal of Biological Chemistry, 1999, 274, 38211-38215.	1.6	164

#	Article	IF	CITATIONS
325	A New 30-kDa Ubiquitin-related SUMO-1 Hydrolase from Bovine Brain. Journal of Biological Chemistry, 1999, 274, 31131-31134.	1.6	66
326	Interaction of hHR23 with S5a. Journal of Biological Chemistry, 1999, 274, 28019-28025.	1.6	243
327	Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120. Genes To Cells, 1999, 4, 529-539.	0.5	34
328	Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene, 1999, 18, 6829-6834.	2.6	274
329	The proteasome-dependent proteolytic system. Molecular Biology Reports, 1999, 26, 3-9.	1.0	38
330	Manipulation of the ubiquitin-proteasome pathway in cachexia: pentoxifylline suppresses the activation of 20S and 26S proteasomes in muscles from tumor-bearing rats. Molecular Biology Reports, 1999, 26, 95-101.	1.0	68
331	Purification and characterization of the 26S proteasome from cultured rice (Oryza sativa) cells. Plant Science, 1999, 149, 33-41.	1.7	17
332	Identification of a novel 300-kDa factor termed lκBαE3-F1 that is required for ubiquitinylation of lκBα. FEBS Letters, 1999, 458, 343-348.	1.3	2
333	lκBα Ubiquitination Is Catalyzed by an SCF-like Complex Containing Skp1, Cullin-1, and Two F-Box/WD40-Repeat Proteins, βTrCP1 and βTrCP2. Biochemical and Biophysical Research Communications, 1999, 256, 127-132.	1.0	116
334	In Vivoandin VitroRecruitment of an lκBα-Ubiquitin Ligase to lκBα Phosphorylated by IKK, Leading to Ubiquitination. Biochemical and Biophysical Research Communications, 1999, 256, 121-126.	1.0	30
335	Molecular Cloning of Chick UCH-6 Which Shares High Similarity with Human UCH-L3: Its Unusual Substrate Specificity and Tissue Distribution. Biochemical and Biophysical Research Communications, 1999, 264, 235-240.	1.0	7
336	Ubiquitin-proteasome system is involved in induction of LFA-1/ICAM-1-dependent adhesion of HL-60 cells. Journal of Leukocyte Biology, 1999, 65, 778-785.	1.5	14
337	Rpn9 Is Required for Efficient Assembly of the Yeast 26S Proteasome. Molecular and Cellular Biology, 1999, 19, 6575-6584.	1.1	63
338	Isolation and Characterization of Cytosolic and Membrane-Bound Deubiquitinylating Enzymes from Bovine Brain. Journal of Biochemistry, 1999, 126, 612-623.	0.9	16
339	ATP-Dependent Inactivation and Sequestration of Ornithine Decarboxylase by the 26S Proteasome Are Prerequisites for Degradation. Molecular and Cellular Biology, 1999, 19, 7216-7227.	1.1	49
340	Splice acceptor site mutation of the transporter associated with antigen processing-1 gene in human bare lymphocyte syndrome. Journal of Clinical Investigation, 1999, 103, 755-758.	3.9	53
341	Proteasome activator (PA28) subunits, α, β and γ (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. European Journal of Cell Biology, 1998, 77, 151-160.	1.6	71
342	Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends in Biochemical Sciences, 1998, 23, 244-245.	3.7	127

#	Article	IF	CITATIONS
343	The proteasome: a proteinâ€destroying machine. Genes To Cells, 1998, 3, 499-510.	0.5	88
344	cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene, 1998, 216, 113-122.	1.0	83
345	Chromosomal Localization and Immunological Analysis of a Family of Human 26S Proteasomal ATPases. Biochemical and Biophysical Research Communications, 1998, 243, 229-232.	1.0	42
346	The Proteasome Is Involved in Angiogenesis. Biochemical and Biophysical Research Communications, 1998, 246, 243-248.	1.0	129
347	Molecular Biology of the Proteasome. Biochemical and Biophysical Research Communications, 1998, 247, 537-541.	1.0	95
348	Growth-Dependent Change of the 26S Proteasome in Budding Yeast. Biochemical and Biophysical Research Communications, 1998, 251, 818-823.	1.0	29
349	cDNA Cloning and Characterization of a Human Proteasomal Modulator Subunit, p27 (PSMD9). Genomics, 1998, 50, 241-250.	1.3	48
350	Identification and Chromosomal Assignment of USP1, a Novel Gene Encoding a Human Ubiquitin-Specific Protease. Genomics, 1998, 54, 155-158.	1.3	36
351	Effects of the Cys Mutations on Structure and Function of the ATP-dependent HslVU Protease in Escherichia coli. Journal of Biological Chemistry, 1998, 273, 22929-22935.	1.6	14
352	The Ras Target AF-6 is a Substrate of the Fam Deubiquitinating Enzyme. Journal of Cell Biology, 1998, 142, 1053-1062.	2.3	109
353	Contribution of Proline Residue for Efficient Production of MHC Class I Ligands by Proteasomes. Journal of Biological Chemistry, 1998, 273, 23062-23071.	1.6	42
354	The 20S Proteasome: Subunits and Functions. Advances in Molecular and Cell Biology, 1998, , 105-128.	0.1	2
355	Simultaneous binding of PA28 and PA700 activators to 20ÂS proteasomes. Biochemical Journal, 1998, 332, 749-754.	1.7	217
356	A novel family of ubiquitin-specific proteases in chick skeletal muscle with distinct N- and C-terminal extensions. Biochemical Journal, 1998, 334, 677-684.	1.7	25
357	Cloning and Sequencing of cDNA from Oryza sativa encoding a homolog to non-ATPase subunit, MBP1, of 26S Proteasome in Arabidopsis thaliana Plant Biotechnology, 1998, 15, 147-150.	0.5	5
358	SUG1, a Component of the 26 S Proteasome, Is an ATPase Stimulated by Specific RNAs. Journal of Biological Chemistry, 1997, 272, 23201-23205.	1.6	26
359	Molecular Cloning of a Novel Ubiquitin-specific Protease, UBP41, with Isopeptidase Activity in Chick Skeletal Muscle. Journal of Biological Chemistry, 1997, 272, 25560-25565.	1.6	40
360	New de-ubiquitinating enzyme, ubiquitin C-terminal hydrolase 8, in chick skeletal muscle. Biochemical Journal, 1997, 325, 325-330.	1.7	20

#	Article	IF	CITATIONS
361	Changes in Proteasome Levels in Spinach (Spinacia oleracea) Seeds during Imbibition and Germination. Bioscience, Biotechnology and Biochemistry, 1997, 61, 998-1001.	0.6	13
362	Expression and subcellular localization of mouse 20S proteasome activator complex PA28. FEBS Letters, 1997, 413, 27-34.	1.3	60
363	cDNA cloning and functional analysis of p44.5 and p55, two regulatory subunits of the 26S proteasome. Gene, 1997, 203, 241-250.	1.0	26
364	Characterization of the Extracellular Domain in Vascular Endothelial Growth Factor Receptor-1 (Flt-1) Tj ETQq0 0	0 rgBT /O [.] 1 . 7	verlock 10 Tf
365	Identification of an Ubiquitin-Ligation System for the Epidermal-Growth-Factor Receptor. Herbimycin A Induces In Vitro Ubiquitination in Rabbit-Reticulocyte Lysate. FEBS Journal, 1997, 247, 1190-1196.	0.2	11
366	Characterization of 26S proteasome alpha- and beta-type and ATPase subunits from spinach and their expression during early stages of seedling development. Plant Molecular Biology, 1997, 34, 307-316.	2.0	19
367	Expression of subunits of the 19S complex and of the PA28 activator in rat skeletal muscle. Molecular Biology Reports, 1997, 24, 95-102.	1.0	27
368	The 26S proteasome: subunits and functions. , 1997, 24, 3-11.		82
369	PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes. Immunogenetics, 1997, 46, 337-344.	1.2	37
370	Structural analysis and chromosomal localization of the mouse Psmb5 gene coding for the constitutively expressed l²-type proteasome subunit. Immunogenetics, 1997, 47, 77-87.	1.2	14
371	Doubleâ€cleavage production of the CTL epitope by proteasomes and PA28: role of the flanking region. Genes To Cells, 1997, 2, 785-800.	0.5	62
372	Molecular properties of the proteasome activator PA28 family proteins and γâ€interferon regulation. Genes To Cells, 1997, 2, 195-211.	0.5	126
373	A Model for the Quaternary Structure of the Proteasome Activator PA28. Journal of Biological Chemistry, 1996, 271, 26410-26417.	1.6	64
374	cDNA cloning of p42, a shared subunit of two proteasome regulatory proteins, reveals a novel member of the AAA protein family. FEBS Letters, 1996, 387, 184-188.	1.3	24
375	Proteasome pathway operates for the degradation of ornithine decarboxylase in intact cells. Biochemical Journal, 1996, 317, 77-80.	1.7	21
376	Structure and Functions of the 20S and 26S Proteasomes. Annual Review of Biochemistry, 1996, 65, 801-847.	5.0	2,357
377	cDNA Cloning and Functional Analysis of the p97 Subunit of the 26S Proteasome, a Polypeptide Identical to the Type-1 Tumor-Necrosis-Factor-Receptor-Associated Protein-2/55.11. FEBS Journal, 1996, 239, 912-921.	0.2	54
378	Long-term culture of functional hepatocytes on chemically modified collagen gels. Cytotechnology, 1996, 21, 31-43.	0.7	12

#	Article	IF	CITATIONS
379	Purification and Characterization of the Heat Shock Proteins HslV and HslU That Form a New ATP-dependent Protease in. Journal of Biological Chemistry, 1996, 271, 14035-14040.	1.6	114
380	Identification, Purification, and Characterization of a PA700-dependent Activator of the Proteasome. Journal of Biological Chemistry, 1996, 271, 3112-3118.	1.6	125
381	Proteasome Subunits X and Y Alter Peptidase Activities in Opposite Ways to the Interferon-γ-induced Subunits LMP2 and LMP7. Journal of Biological Chemistry, 1996, 271, 17275-17280.	1.6	145
382	Protein and Gene Structures of 20S and 26S Proteasomes. Advances in Experimental Medicine and Biology, 1996, 389, 187-195.	0.8	6
383	Changes of Proteasomes and Cathepsins Activities and Their Expression during Differentiation of C2C12 Myoblasts. Journal of Biochemistry, 1995, 117, 1088-1094.	0.9	33
384	The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Current Biology, 1995, 5, 766-774.	1.8	190
385	Molecular biology of proteasomes. Molecular Biology Reports, 1995, 21, 21-26.	1.0	77
386	Roles of proteasomes in cell growth. Molecular Biology Reports, 1995, 21, 49-52.	1.0	60
387	Molecular cloning of two types of cDNA encoding subunit RC6-I of rat proteasomes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1264, 45-52.	2.4	16
388	Ordered Structure of the Crystallized Bovine 20S Proteasome1. Journal of Biochemistry, 1995, 117, 471-474.	0.9	14
389	Developmental Changes of the 26 S Proteasome in Abdominal Intersegmental Muscles of Manduca sexta during Programmed Cell Death. Journal of Biological Chemistry, 1995, 270, 1850-1858.	1.6	146
390	Multiple Ubiquitin C-terminal Hydrolases from Chick Skeletal Muscle. Journal of Biological Chemistry, 1995, 270, 18766-18773.	1.6	33
391	Degradation Process of Ligand-stimulated Platelet-derived Growth Factor β -Receptor Involves Ubiquitin-Proteasome Proteolytic Pathway. Journal of Biological Chemistry, 1995, 270, 29447-29452.	1.6	126
392	cDNA cloning of a new putative ATPase subunit p45 of the human 26S proteasome, a homolog of yeast transcriptional factor Sug1p. FEBS Letters, 1995, 363, 151-156.	1.3	57
393	Primary structures of two homologous subunits of PA28, a Î ³ -interferon-inducible protein activator of the 20S proteasome. FEBS Letters, 1995, 366, 37-42.	1.3	181
394	9 Proteasome and Ubiquitin-Dependent Proteolysis. , 1994, , 107-120.		0
395	Sequence analyses and inter-species comparisons of three novel human proteasomal subunits, HsN3, HsC7-I and HsC10-II, confine potential proteolytic active-site residues. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 361-368.	2.4	32
396	Isolation and Characterization of α-Type HC3 and β-Type HC5 Subunit Genes of Human Proteasomes. Journal of Molecular Biology, 1994, 244, 117-124.	2.0	18

#	Article	IF	CITATIONS
397	Replacement of proteasome subunits X and Y by LMP7 and LMP2 induced by interferon-Î ³ for acquirement of the functional diversity responsible for antigen processing. FEBS Letters, 1994, 343, 85-88.	1.3	111
398	Interferon-Î ³ Induces Different Subunit Organizations and Functional Diversity of Proteasomes1. Journal of Biochemistry, 1994, 115, 257-269.	0.9	370
399	Role of proteasomes modified by interferon- <i>γ</i> in antigen processing. Journal of Leukocyte Biology, 1994, 56, 571-575.	1.5	115
400	Mos is degraded by the 26S proteasome in a ubiquitin-dependent fashion. FEBS Letters, 1993, 324, 345-348.	1.3	53
401	cDNA cloning of rat proteasome subunit RC7-I, a homologue of yeast PRE1 essential for chymotrypsin-like activity. FEBS Letters, 1993, 332, 52-56.	1.3	12
402	cDNA cloning of rat proteasome subunit RC10-II, assumed to be responsible for trypsin-like catalytic activity. FEBS Letters, 1993, 336, 462-466.	1.3	13
403	Down-regulation of ubiquitin gene expression during differentiation of human leukemia cells. FEBS Letters, 1993, 322, 235-239.	1.3	22
404	Molecular Characterization of the "26S" Proteasome Complex from Rat Liver. Journal of Structural Biology, 1993, 111, 200-211.	1.3	142
405	Regulation of proteasome expression in developing and transformed cells. Advances in Enzyme Regulation, 1993, 33, 173-174.	2.9	21
406	Purification and Characterization of the 26S Proteasome Complex Catalyzing ATP-Dependent Breakdown of Ubiquitin-Ligated Prot from Rat Liver1. Journal of Biochemistry, 1993, 113, 754-768.	0.9	84
407	Molecular Structures of 20S and 26S Proteasomes. Enzyme & Protein, 1993, 47, 241-251.	1.6	77
408	c-Myc expression is down-regulated by cell-cell and cell-extracellular matrix contacts in normal hepatocytes, but not in hepatoma cells. Biochemical and Biophysical Research Communications, 1992, 184, 825-831.	1.0	23
409	PRS3 encoding an essential subunit of yeast proteasomes homologous to mammalian proteasome subunit C5. Biochemical and Biophysical Research Communications, 1992, 182, 452-460.	1.0	29
410	cDNA cloning of rat proteasome subunit RC1, a homologue of RING10 located in the human MHC class Il region. FEBS Letters, 1992, 301, 65-68.	1.3	25
411	Molecular Cloning of cDNAs for Rat Proteasomes: Deduced Primary Structures of Four Other Subunits1. Journal of Biochemistry, 1992, 112, 530-534.	0.9	33
412	Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature, 1992, 360, 597-599.	13.7	767
413	Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms. FEBS Journal, 1992, 206, 567-578.	0.2	115
414	Deduced primary structure of a Xenopus proteasome subunit XC3 and expression of its mRNA during early development. Biochemical and Biophysical Research Communications, 1991, 178, 1233-1239.	1.0	21

#	Article	IF	CITATIONS
415	ATP-dependent reversible association of proteasomes with multiple protein components to form 26S complexes that degrade ubiquitinated proteins in human HL-60 cells. FEBS Letters, 1991, 284, 206-210.	1.3	137
416	Molecular cloning and sequence analysis of cDNAs for five major subunits of human proteasomes (multi-catalytic proteinase complexes). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 95-102.	2.4	80
417	Interleukinâ€4 Downregulates Interleukinâ€6 Production by Human Alveolar Macrophages at Protein and mRNA Levels. Microbiology and Immunology, 1991, 35, 879-893.	0.7	25
418	Induction of Glutathione S-Transferase P-Form in Primary Cultured Rat Hepatocytes by Epidermal Growth Factor and Insulin. Japanese Journal of Cancer Research, 1991, 82, 807-814.	1.7	22
419	Molecular cloning of cDNA for proteasomes from rat liver: primary structure of component C3 with a possible tyrosine phosphorylation site. Biochemistry, 1990, 29, 3777-3785.	1.2	79
420	cDNA cloning and sequencing of component C9 of proteasomes from rat hepatoma cells. FEBS Letters, 1990, 264, 279-282.	1.3	60
421	Possible mechanism of nuclear translocation of proteasomes. FEBS Letters, 1990, 271, 41-46.	1.3	123
422	cDNA cloning and sequencing of component C5 of proteasomes from rat hepatoma cells. FEBS Letters, 1990, 264, 91-94.	1.3	51
423	The NH2 -terminal residues of rat liver proteasome (multicatalytic proteinase complex) subunits, C2, C3 and C8, are N α-acetylated. FEBS Letters, 1990, 263, 373-375.	1.3	28
424	cDNA cloning and sequencing of component C8 of proteasomes from rat hepatoma cells. Biochemical and Biophysical Research Communications, 1990, 171, 676-683.	1.0	49
425	Proteasomes (multicatalytic proteinase complexes) in eukaryotic cells Cell Structure and Function, 1990, 15, 127-132.	0.5	31
426	Direct evidence for nuclear and cytoplasmic colocalization of proteasomes (Multiprotease) Tj ETQq0 0 0 rgBT /O	verlock 10 2.0	Tf 50 302 To
427	Molecular cloning of cDNA for proteasomes (multicatalytic proteinase complexes) from rat liver: primary structure of the largest component (C2). Biochemistry, 1989, 28, 7332-7340.	1.2	90
428	Separation of yeast proteasome subunits. Biochemical and Biophysical Research Communications, 1989, 164, 1253-1261.	1.0	39
429	Half-life of proteasomes (multiprotease complexes) in rat liver. Biochemical and Biophysical Research Communications, 1989, 159, 1309-1315.	1.0	83
430	Na+ , K+ -specific inhibition of protein and peptide hydrolyses by proteasomes from human hepatoma tissues. FEBS Letters, 1989, 247, 197-200.	1.3	10
431	Autodegradation of rat liver proteasomes (large multicatalytic proteinase complexes). Biochemical and Biophysical Research Communications, 1989, 158, 548-554.	1.0	23

432Role of Substrate in Reversible Activation of Proteasomes (Multi-Protease Complexes) by Sodium
Dodecyl Sulfate1. Journal of Biochemistry, 1989, 106, 495-500.0.972

#	Article	IF	CITATIONS
433	Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature, 1988, 331, 192-194.	13.7	415
434	Involvement of proteasomes (multicatalytic proteinase) in ATP-dependent proteolysis in rat reticulocyte extracts. FEBS Letters, 1988, 236, 159-162.	1.3	54
435	Molecular organization of a high molecular weight multi-protease complex from rat liver. Journal of Molecular Biology, 1988, 203, 985-996.	2.0	93
436	Increased survival of rat hepatocytes in serum-free medium by inhibition of a trypsin-like protease associated with their plasma membranes. Experimental Cell Research, 1984, 155, 81-91.	1.2	52
437	Different Effects of Amino Acid Deprivation on Syntheses of Intra- and Extracellular Proteins in Rat Hepatocytes in Primary Culture1. Journal of Biochemistry, 1983, 94, 1339-1348.	0.9	16
438	Clinical Value of the Determination of Serum Guanase Activity. Gastroenterology, 1982, 83, 1102-1108.	0.6	21
439	Effects of leupeptin and pepstatin on protein turnover in adult rat hepatocytes in primary culture. Archives of Biochemistry and Biophysics, 1981, 208, 296-304.	1.4	41
440	BIOCHEMICAL FUNCTIONS OF ADULT RAT HEPATOCYTES IN PRIMARY CULTURE*. Annals of the New York Academy of Sciences, 1980, 349, 77-84.	1.8	99
441	Induction of hemoglobin-hydrolase activity by the thiol-protease inhibitors leupeptin and antipain in adult rat liver cells in primary culture. Biochemical and Biophysical Research Communications, 1979, 91, 102-107.	1.0	18
442	Biochemical Studies on Liver Functions in Primary Cultured Hepatocytes of Adult Rats1: II. Regulation of Protein and Amino Acid Metabolism. Journal of Biochemistry, 1979, 86, 863-870.	0.9	30
443	Biochemical Studies on Liver Functions in Primary Cultured Hepatocytes of Adult Rats1. Journal of Biochemistry, 1978, 84, 937-946.	0.9	357
444	Effect of the growth state on protein turnover in two lines of cultured BHK cells. Journal of	2.0	16

Cellular Physiology, 1977, 93, 407-416. 444