
Brandon J Aragona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11067452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo detection of optically-evoked opioid peptide release. ELife, 2018, 7, .	6.0	53
2	Rapid induction of dopamine sensitization in the nucleus accumbens shell induced by a single injection of cocaine. Behavioural Brain Research, 2017, 324, 66-70.	2.2	6
3	The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core. Learning and Memory, 2016, 23, 595-606.	1.3	26
4	Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function. European Journal of Neuroscience, 2016, 43, 662-670.	2.6	36
5	Functionally Distinct Dopamine Signals in Nucleus Accumbens Core and Shell in the Freely Moving Rat. Journal of Neuroscience, 2016, 36, 98-112.	3.6	39
6	Mesolimbic dopamine signals the value of work. Nature Neuroscience, 2016, 19, 117-126.	14.8	644
7	Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds. ELife, 2016, 5, .	6.0	60
8	Sex differences in the influence of social context, salient social stimulation and amphetamine on ultrasonic vocalizations in prairie voles. Integrative Zoology, 2014, 9, 280-293.	2.6	15
9	Rapid dopamine transmission within the nucleus accumbens: Dramatic difference between morphine and oxycodone delivery. European Journal of Neuroscience, 2014, 40, 3041-3054.	2.6	87
10	Chemical Gradients within Brain Extracellular Space Measured using Low Flow Push–Pull Perfusion Sampling in Vivo. ACS Chemical Neuroscience, 2013, 4, 321-329.	3.5	41
11	μ-Opioid Receptors within Subregions of the Striatum Mediate Pair Bond Formation through Parallel Yet Distinct Reward Mechanisms. Journal of Neuroscience, 2013, 33, 9140-9149.	3.6	79
12	Aversive motivation and the maintenance of monogamous pair bonding. Reviews in the Neurosciences, 2013, 24, 51-60.	2.9	48
13	Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of <scp>D</scp> 2â€like receptor tone in the nucleus accumbens. European Journal of Neuroscience, 2013, 38, 2572-2588.	2.6	21
14	Aversive Stimuli Differentially Modulate Real-Time Dopamine Transmission Dynamics within the Nucleus Accumbens Core and Shell. Journal of Neuroscience, 2012, 32, 15779-15790.	3.6	152
15	κ-Opioid Receptors within the Nucleus Accumbens Shell Mediate Pair Bond Maintenance. Journal of Neuroscience, 2012, 32, 6771-6784.	3.6	95
16	Cocaine Cues Drive Opposing Context-Dependent Shifts in Reward Processing and Emotional State. Biological Psychiatry, 2011, 69, 1067-1074.	1.3	104
17	The regional specificity of rapid actions of cocaine. Nature Reviews Neuroscience, 2011, 12, 700-700.	10.2	4
18	Cocaine must enter the brain to evoke unconditioned dopamine release within the nucleus accumbens shell. Neuroscience Letters, 2011, 504, 13-17.	2.1	10

BRANDON J ARAGONA

#	Article	IF	CITATIONS
19	Neonatal exposure to the D1 agonist SKF38393 inhibits pair bonding in the adult prairie vole. Behavioural Pharmacology, 2011, 22, 703-710.	1.7	17
20	Social Bonding Decreases the Rewarding Properties of Amphetamine through a Dopamine D1 Receptor-Mediated Mechanism. Journal of Neuroscience, 2011, 31, 7960-7966.	3.6	92
21	Nucleus accumbens dopamine mediates amphetamine-induced impairment of social bonding in a monogamous rodent species. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1217-1222.	7.1	86
22	Basolateral Amygdala Modulates Terminal Dopamine Release in the Nucleus Accumbens and Conditioned Responding. Biological Psychiatry, 2010, 67, 737-744.	1.3	99
23	Regional specificity in the realâ€time development of phasic dopamine transmission patterns during acquisition of a cue–cocaine association in rats. European Journal of Neuroscience, 2009, 30, 1889-1899.	2.6	108
24	Dopamine regulation of social choice in a monogamous rodent species. Frontiers in Behavioral Neuroscience, 2009, 3, 15.	2.0	93
25	Preferential Enhancement of Dopamine Transmission within the Nucleus Accumbens Shell by Cocaine Is Attributable to a Direct Increase in Phasic Dopamine Release Events. Journal of Neuroscience, 2008, 28, 8821-8831.	3.6	450
26	Opposing Regulation of Pair Bond Formation by cAMP Signaling within the Nucleus Accumbens Shell. Journal of Neuroscience, 2007, 27, 13352-13356.	3.6	34
27	Phasic Dopamine Release Evoked by Abused Substances Requires Cannabinoid Receptor Activation. Journal of Neuroscience, 2007, 27, 791-795.	3.6	334
28	Coordinated Accumbal Dopamine Release and Neural Activity Drive Goal-Directed Behavior. Neuron, 2007, 54, 237-244.	8.1	184
29	Amphetamine reward in the monogamous prairie vole. Neuroscience Letters, 2007, 418, 190-194.	2.1	41
30	Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. European Journal of Neuroscience, 2007, 26, 2046-2054.	2.6	155
31	Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neuroscience Letters, 2006, 394, 146-151.	2.1	190
32	Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature Neuroscience, 2006, 9, 133-139.	14.8	386
33	Dopamine and monogamy. Brain Research, 2006, 1126, 76-90.	2.2	68
34	Dynamic neuroplasticity and the automation of motivated behavior. Learning and Memory, 2006, 13, 558-559.	1.3	4
35	The Prairie Vole (Microtus ochrogaster): An Animal Model for Behavioral Neuroendocrine Research on Pair Bonding. ILAR Journal, 2004, 45, 35-45.	1.8	86
36	Neurochemical regulation of pair bonding in male prairie voles. Physiology and Behavior, 2004, 83, 319-328.	2.1	111

Brandon J Aragona

#	Article	IF	CITATIONS
37	A Critical Role for Nucleus Accumbens Dopamine in Partner-Preference Formation in Male Prairie Voles. Journal of Neuroscience, 2003, 23, 3483-3490.	3.6	293
38	Behavioral and Neurochemical Investigation of Circadian Time-Place Learning in the Rat. Journal of Biological Rhythms, 2002, 17, 330-344.	2.6	29
39	Food-anticipatory activity persists after olfactory bulb ablation in the rat. Physiology and Behavior, 2001, 72, 231-235.	2.1	41
40	Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat. Physiology and Behavior, 2001, 74, 349-354.	2.1	29