Bryan T Macdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11063002/publications.pdf Version: 2024-02-01

RRYAN T MACDONALD

#	Article	IF	CITATIONS
1	TAILS Identifies Candidate Substrates and Biomarkers of ADAMTS7, a Therapeutic Protease Target in Coronary Artery Disease. Molecular and Cellular Proteomics, 2022, 21, 100223.	2.5	7
2	Genome-wide pleiotropy analysis of coronary artery disease and pneumonia identifies shared immune pathways. Science Advances, 2022, 8, eabl4602.	4.7	4
3	Coronary Disease Association With ADAMTS7 Is Due to Protease Activity. Circulation Research, 2021, 129, 458-470.	2.0	22
4	Rare, Damaging DNA Variants in <i>CORIN</i> and Risk of Coronary Artery Disease: Insights From Functional Genomics and Large-Scale Sequencing Analyses. Circulation Genomic and Precision Medicine, 2021, 14, e003399.	1.6	10
5	Development of a novel, sensitive cell-based corin assay. Biochemical Pharmacology, 2019, 160, 62-70.	2.0	2
6	Characterization of Tiki, a New Family of Wnt-specific Metalloproteases. Journal of Biological Chemistry, 2016, 291, 2435-2443.	1.6	38
7	Notum Is Required for Neural and Head Induction via Wnt Deacylation, Oxidation, and Inactivation. Developmental Cell, 2015, 32, 719-730.	3.1	155
8	High Bone Mass–Causing Mutant LRP5 Receptors Are Resistant to Endogenous Inhibitors <i>In Vivo</i> . Journal of Bone and Mineral Research, 2015, 30, 1822-1830.	3.1	20
9	Expression and evolution of the Tiki1 and Tiki2 genes in vertebrates. International Journal of Developmental Biology, 2014, 58, 355-362.	0.3	11
10	Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nature Medicine, 2014, 20, 1229-1230.	15.2	26
11	Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL. Blood, 2014, 124, 1089-1098.	0.6	65
12	Disulfide Bond Requirements for Active Wnt Ligands. Journal of Biological Chemistry, 2014, 289, 18122-18136.	1.6	76
13	Dkk1 in the peri-cloaca mesenchyme regulates formation of anorectal and genitourinary tracts. Developmental Biology, 2014, 385, 41-51.	0.9	22
14	The TIKI/TraB/PrgY Family: A Common Protease Fold for Cell Signaling from Bacteria to Metazoa?. Developmental Cell, 2013, 25, 225-227.	3.1	24
15	Wnt Stabilization of β-Catenin Reveals Principles for Morphogen Receptor-Scaffold Assemblies. Science, 2013, 340, 867-870.	6.0	222
16	Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nature Communications, 2013, 4, 2787.	5.8	161
17	Canonical Wnt signaling in megakaryocytes regulates proplatelet formation. Blood, 2013, 121, 188-196.	0.6	42
18	A finger on the pulse of Wnt receptor signaling. Cell Research, 2012, 22, 1410-1412.	5.7	20

2

BRYAN T MACDONALD

#	Article	IF	CITATIONS
19	Frizzled and LRP5/6 Receptors for Wnt/Â-Catenin Signaling. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007880-a007880.	2.3	472
20	Tiki1 Is Required for Head Formation via Wnt Cleavage-Oxidation and Inactivation. Cell, 2012, 149, 1565-1577.	13.5	125
21	Structural and Functional Studies of LRP6 Ectodomain Reveal a Platform for Wnt Signaling. Developmental Cell, 2011, 21, 848-861.	3.1	109
22	Lrp5 functions in bone to regulate bone mass. Nature Medicine, 2011, 17, 684-691.	15.2	404
23	Dissecting Molecular Differences between Wnt Coreceptors LRP5 and LRP6. PLoS ONE, 2011, 6, e23537.	1.1	60
24	Wnt/ \hat{l}^2 -Catenin Signaling: Components, Mechanisms, and Diseases. Developmental Cell, 2009, 17, 9-26.	3.1	4,757
25	Wnt Signal Amplification via Activity, Cooperativity, and Regulation of Multiple Intracellular PPPSP Motifs in the Wnt Co-receptor LRP6. Journal of Biological Chemistry, 2008, 283, 16115-16123.	1.6	82
26	Mutations of Voltage-gated Sodium Channels in Movement Disorders and Epilepsy. Novartis Foundation Symposium, 2008, , 72-86.	1.2	20
27	SnapShot: Wnt/β-Catenin Signaling. Cell, 2007, 131, 1204.e1-1204.e2.	13.5	149
28	SnapShot: Noncanonical Wnt Signaling Pathways. Cell, 2007, 131, 1378.e1-1378.e2.	13.5	284
29	Bone mass is inversely proportional to Dkk1 levels in mice. Bone, 2007, 41, 331-339.	1.4	162
30	Reduction of the Wnt Inhibitor Dkk1 Correlates With Improved Bone Mechanical and Morphological Properties in Mice. , 2007, , .		0
31	Hypomorphic expression of Dkk1 in the doubleridgemouse: dose dependence and compensatory interactions with Lrp6. Development (Cambridge), 2004, 131, 2543-2552.	1.2	114
32	En1 and Wnt7a interact with Dkk1 during limb development in the mouse. Developmental Biology, 2004, 272, 134-144.	0.9	65
33	Doubleridge, a mouse mutant with defective compaction of the apical ectodermal ridge and normal dorsal–ventral patterning of the limb. Developmental Biology, 2003, 255, 350-362.	0.9	37
34	A Novel SCN1A Mutation Associated with Generalized Epilepsy with Febrile Seizures Plus—and Prevalence of Variants in Patients with Epilepsy. American Journal of Human Genetics, 2001, 68, 866-873.	2.6	254
35	Sodium Channels and Neurological Disease: Insights from Scn8a Mutations in the Mouse. Neuroscientist, 2001, 7, 136-145.	2.6	58
36	Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nature Genetics, 2000, 24, 343-345.	9.4	910