John G Bishop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11061452/publications.pdf Version: 2024-02-01

IOHN C RISHOD

#	Article	IF	CITATIONS
1	Evaluating Approaches to the Conservation of Rare and Endangered Plants. Ecology, 1994, 75, 584-606.	3.2	853
2	Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens. American Naturalist, 2000, 155, 238-251.	2.1	164
3	Plant–pathogen arms races at the molecular level. Current Opinion in Plant Biology, 2000, 3, 299-304.	7.1	163
4	Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Annals of Botany, 2012, 110, 329-348.	2.9	149
5	Local adaptation across a climatic gradient despite small effective population size in the rare sapphire rockcress. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1715-1721.	2.6	137
6	Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiological and Molecular Plant Pathology, 2000, 56, 117-130.	2.5	127
7	Structure of the Glucanase Inhibitor Protein (GIP) Family from <i>Phytophthora</i> Species Suggests Coevolution with Plant Endo-β-1,3-Glucanases. Molecular Plant-Microbe Interactions, 2008, 21, 820-830.	2.6	101
8	When Can Herbivores Slow or Reverse the Spread of an Invading Plant? A Test Case from Mount St. Helens. American Naturalist, 2005, 166, 669-685.	2.1	93
9	VARIATION IN FLOWERING PHENOLOGY AND ITS CONSEQUENCES FOR LUPINES COLONIZING MOUNT ST. HELENS. Ecology, 1998, 79, 534-546.	3.2	88
10	EARLY PRIMARY SUCCESSION ON MOUNT ST. HELENS: IMPACT OF INSECT HERBIVORES ON COLONIZING LUPINES. Ecology, 2002, 83, 191-202.	3.2	83
11	Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens. PLoS ONE, 2009, 4, e7807.	2.5	55
12	Directed Mutagenesis Confirms the Functional Importance of Positively Selected Sites in Polygalacturonase Inhibitor Protein. Molecular Biology and Evolution, 2005, 22, 1531-1534.	8.9	53
13	Propagule limitation and competition with nitrogen fixers limit conifer colonization during primary succession. Journal of Vegetation Science, 2014, 25, 990-1003.	2.2	44
14	N-P Co-Limitation of Primary Production and Response of Arthropods to N and P in Early Primary Succession on Mount St. Helens Volcano. PLoS ONE, 2010, 5, e13598.	2.5	42
15	Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession. Oecologia, 2014, 176, 1135-1150.	2.0	31
16	A Stoichiometric Model of Early Plant Primary Succession. American Naturalist, 2011, 177, 233-245.	2.1	26
17	What causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape?. American Journal of Botany, 2015, 102, 1309-1322.	1.7	26
18	Spatially structured herbivory and primary succession at Mount St Helens: field surveys and experimental growth studies suggest a role for nutrients. Ecological Entomology, 2004, 29, 398-409.	2.2	24

John G Bishop

#	Article	IF	CITATIONS
19	Linking community and ecosystem development on Mount St. Helens. Oecologia, 2006, 148, 312-324.	2.0	22
20	Disentangling herbivore impacts in primary succession by refocusing the plant stress and vigor hypotheses on phenology. Ecological Monographs, 2019, 89, e01389.	5.4	16
21	The Effect of Consumers and Mutualists of Vaccinium membranaceum at Mount St. Helens: Dependence on Successional Context. PLoS ONE, 2011, 6, e26094.	2.5	9
22	A New Filatima Busck (Lepidoptera: Gelechiidae) Associated with Lupine and Early Herbivore Colonization on Mount St. Helens. Proceedings of the Entomological Society of Washington, 2009, 111, 293-304.	0.2	3