Stephen B Shears

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1105544/publications.pdf Version: 2024-02-01

STEDHEN R SHEADS

#	Article	IF	CITATIONS
1	Development of Novel IP6K Inhibitors for the Treatment of Obesity and Obesity-Induced Metabolic Dysfunctions. Journal of Medicinal Chemistry, 2022, 65, 6869-6887.	6.4	15
2	A structural expos \tilde{A} © of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop. Nature Communications, 2022, 13, 2231.	12.8	7
3	Structural and catalytic analyses of the InsP ₆ kinase activities of higher plant ITPKs. FASEB Journal, 2022, 36, .	0.5	10
4	Signals The Inositol Pyrophosphate Signaling Family. , 2021, , 99-105.		0
5	New structural insights reveal an expanded reaction cycle for inositol pyrophosphate hydrolysis by human DIPP1. FASEB Journal, 2021, 35, e21275.	0.5	15
6	Metabolic supervision by PPIP5K, an inositol pyrophosphate kinase/phosphatase, controls proliferation of the HCT116 tumor cell line. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
7	Flavored e-liquids increase cytoplasmic Ca ²⁺ levels in airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L226-L241.	2.9	24
8	A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Advances in Biological Regulation, 2020, 75, 100674.	2.3	33
9	Metabolism and Functions of Inositol Pyrophosphates: Insights Gained from the Application of Synthetic Analogues. Molecules, 2020, 25, 4515.	3.8	13
10	Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry. Nature Communications, 2020, 11, 6035.	12.8	69
11	InsP ₇ is a small-molecule regulator of NUDT3-mediated mRNA decapping and processing-body dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19245-19253.	7.1	27
12	Rapid stimulation of cellular Pi uptake by the inositol pyrophosphate InsP ₈ induced by its photothermal release from lipid nanocarriers using a near infra-red light-emitting diode. Chemical Science, 2020, 11, 10265-10278.	7.4	4
13	Control of XPR1-dependent cellular phosphate efflux by InsP ₈ is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3568-3574.	7.1	70
14	A Short Historical Perspective of Methods in Inositol Phosphate Research. Methods in Molecular Biology, 2020, 2091, 1-28.	0.9	5
15	Synthesis of an α-phosphono-α,α-difluoroacetamide analogue of the diphosphoinositol pentakisphosphate 5-InsP ₇ . MedChemComm, 2019, 10, 1165-1172.	3.4	10
16	Dynamics of Substrate Processing by PPIP5K2, a Versatile Catalytic Machine. Structure, 2019, 27, 1022-1028.e2.	3.3	9
17	Functional Multiplicity of an Insect Cytokine Family Assists Defense Against Environmental Stress. Frontiers in Physiology, 2019, 10, 222.	2.8	9
18	PPIP5K2 and PCSK1 are Candidate Genetic Contributors to Familial Keratoconus. Scientific Reports, 2019, 9, 19406.	3.3	34

#	Article	IF	CITATIONS
19	Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure–Activity Analysis. Journal of Medicinal Chemistry, 2019, 62, 1443-1454.	6.4	38
20	Inositol phosphate kinases: Expanding the biological significance of the universal core of the protein kinase fold. Advances in Biological Regulation, 2019, 71, 118-127.	2.3	32
21	The Drosophila cytokine, CBP: A model that illuminates the yin-yang of inflammation and longevity in humans?. Cytokine, 2018, 110, 298-300.	3.2	4
22	Inositol pyrophosphate synthesis by diphosphoinositol pentakisphosphate kinase-1 is regulated by phosphatidylinositol(4,5)bisphosphate. Bioscience Reports, 2018, 38, .	2.4	10
23	Inositol hexakisphosphate kinase 1 is a metabolic sensor in pancreatic β-cells. Cellular Signalling, 2018, 46, 120-128.	3.6	20
24	Protein kinase- and lipase inhibitors of inositide metabolism deplete IP7 indirectly in pancreatic β-cells: Off-target effects on cellular bioenergetics and direct effects on IP6K activity. Cellular Signalling, 2018, 42, 127-133.	3.6	4
25	Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. Journal of Cellular Physiology, 2018, 233, 1897-1912.	4.1	90
26	A genome-wide dsRNA library screen for Drosophila genes that regulate the GBP/phospholipase C signaling axis that links inflammation to aging. BMC Research Notes, 2018, 11, 884.	1.4	2
27	Structural and biochemical characterization of Siw14: A protein-tyrosine phosphatase fold that metabolizes inositol pyrophosphates. Journal of Biological Chemistry, 2018, 293, 6905-6914.	3.4	23
28	Use of Protein Kinase–Focused Compound Libraries for the Discovery of New Inositol Phosphate Kinase Inhibitors. SLAS Discovery, 2018, 23, 982-988.	2.7	15
29	Mutations in Diphosphoinositol-Pentakisphosphate Kinase PPIP5K2 are associated with hearing loss in human and mouse. PLoS Genetics, 2018, 14, e1007297.	3.5	37
30	РРІР5К., 2018, , 4117-4123.		0
31	ITPK1 (Inositol Tetrakisphosphate 1-Kinase). , 2018, , 2732-2737.		Ο
32	Role of 5â€IP ₇ in the Regulation of Gene Expression. FASEB Journal, 2018, 32, 533.86.	0.5	0
33	The Significance of the Bifunctional Kinase/Phosphatase Activities of Diphosphoinositol Pentakisphosphate Kinases (PPIP5Ks) for Coupling Inositol Pyrophosphate Cell Signaling to Cellular Phosphate Homeostasis. Journal of Biological Chemistry, 2017, 292, 4544-4555.	3.4	57
34	KO of 5-InsP ₇ kinase activity transforms the HCT116 colon cancer cell line into a hypermetabolic, growth-inhibited phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11968-11973.	7.1	62
35	Structural features of human inositol phosphate multikinase rationalize its inositol phosphate kinase and phosphoinositide 3-kinase activities. Journal of Biological Chemistry, 2017, 292, 18192-18202.	3.4	23
36	Cytokine signaling through <i>Drosophila</i> Mthl10 ties lifespan to environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13786-13791.	7.1	36

#	Article	IF	CITATIONS
37	The significance of the 1-kinase/1-phosphatase activities of the PPIP5K family. Advances in Biological Regulation, 2017, 63, 98-106.	2.3	23
38	Inositol Pyrophosphates. , 2017, , .		0
39	A High-Throughput Screening-Compatible Strategy for the Identification of Inositol Pyrophosphate Kinase Inhibitors. PLoS ONE, 2016, 11, e0164378.	2.5	2
40	Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels. PLoS ONE, 2016, 11, e0165286.	2.5	37
41	Towards pharmacological intervention in inositol pyrophosphate signalling. Biochemical Society Transactions, 2016, 44, 191-196.	3.4	13
42	Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues. Chemistry - A European Journal, 2016, 22, 12406-12414.	3.3	19
43	РРІР5К., 2016, , 1-7.		0
44	ITPK1 (Inositol Tetrakisphosphate 1-Kinase). , 2016, , 1-6.		0
45	Asp1 from <i>Schizosaccharomyces pombe</i> Binds a [2Fe-2S] ²⁺ Cluster Which Inhibits Inositol Pyrophosphate 1-Phosphatase Activity. Biochemistry, 2015, 54, 6462-6474.	2.5	51
46	Identification of a functional nuclear translocation sequence in hPPIP5K2. BMC Cell Biology, 2015, 16, 17.	3.0	13
47	Synthetic tools for studying the chemical biology of InsP ₈ . Chemical Communications, 2015, 51, 12605-12608.	4.1	18
48	Inositol pyrophosphates: Why so many phosphates?. Advances in Biological Regulation, 2015, 57, 203-216.	2.3	101
49	Human Genome-Wide RNAi Screen Identifies an Essential Role for Inositol Pyrophosphates in Type-I Interferon Response. PLoS Pathogens, 2014, 10, e1003981.	4.7	68
50	IP6K structure and the molecular determinants of catalytic specificity in an inositol phosphate kinase family. Nature Communications, 2014, 5, 4178.	12.8	55
51	Synthesis of Densely Phosphorylated Bisâ€1,5â€Diphosphoâ€ <i>myo</i> â€Inositol Tetrakisphosphate and its Enantiomer by Bidirectional Pâ€Anhydride Formation. Angewandte Chemie - International Edition, 2014, 53, 9508-9511.	13.8	66
52	Switching between humoral and cellular immune responses in Drosophila is guided by the cytokine GBP. Nature Communications, 2014, 5, 4628.	12.8	64
53	Synthetic Inositol Phosphate Analogs Reveal that PPIP5K2 Has a Surface-Mounted Substrate Capture Site that Is a Target for Drug Discovery. Chemistry and Biology, 2014, 21, 689-699.	6.0	56
54	A Bacterial Homolog of a Eukaryotic Inositol Phosphate Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut. Cell Reports, 2014, 6, 646-656.	6.4	88

#	Article	IF	CITATIONS
55	A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA. Journal of Cell Science, 2013, 126, 437-444.	2.0	12
56	Structural insight into inositol pyrophosphate turnover. Advances in Biological Regulation, 2013, 53, 19-27.	2.3	17
57	Understanding inositol pyrophosphate metabolism and function: Kinetic characterization of the DIPPs. FEBS Letters, 2013, 587, 3464-3470.	2.8	66
58	A sequence variant in the phospholipase C epsilon C2 domain is associated with esophageal carcinoma and esophagitis. Molecular Carcinogenesis, 2013, 52, 80-86.	2.7	15
59	PPIP5K1 modulates ligand competition between diphosphoinositol polyphosphates and PtdIns(3,4,5) <i>P</i> 3 for polyphosphoinositide-binding domains. Biochemical Journal, 2013, 453, 413-426.	3.7	67
60	The kinetic properties of a human PPIP5K reveal that its kinase activities are protected against the consequences of a deteriorating cellular bioenergetic environment. Bioscience Reports, 2013, 33, e00022.	2.4	38
61	Functional Regulation of ClC-3 in the Migration of Vascular Smooth Muscle Cells. Hypertension, 2013, 61, 174-179.	2.7	25
62	The kinetic properties of a human PPIP5K reveal that its kinase activities are protected against the consequences of a deteriorating cellular bioenergetic environment. FASEB Journal, 2013, 27, 1050.3.	0.5	1
63	Activation of PLC by an endogenous cytokine (GBP) in <i>Drosophila</i> S3 cells and its application as a model for studying inositol phosphate signalling through ITPK1. Biochemical Journal, 2012, 448, 273-283.	3.7	13
64	Functional Regulation of ClC-3 in the Migration of Vascular Smooth Muscle Cells. Biophysical Journal, 2012, 102, 549a.	0.5	0
65	First synthetic analogues of diphosphoinositol polyphosphates: interaction with PP-InsP5 kinase. Chemical Communications, 2012, 48, 11292.	4.1	30
66	Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nature Chemical Biology, 2012, 8, 111-116.	8.0	123
67	Defining Signal Transduction by Inositol Phosphates. Sub-Cellular Biochemistry, 2012, 59, 389-412.	2.4	39
68	Diphosphoinositol polyphosphates: What are the mechanisms?. Advances in Enzyme Regulation, 2011, 51, 13-25.	2.6	25
69	Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochemical Journal, 2011, 434, 415-426.	3.7	48
70	Abstract 4704: A sequence variant in the phospholipase C epsilon C2 domain is associated with esophageal carcinoma and esophagitis. , 2011, , .		0
71	The long-awaited demonstration of protein pyrophosphorylation by IP7 in vivo?. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E17; author reply E18.	7.1	6
72	Inositol Pentakisphosphate. , 2010, , 1159-1165.		1

#	Article	IF	CITATIONS
73	Diphosphoinositol Polyphosphates: Metabolic Messengers?. Molecular Pharmacology, 2009, 76, 236-252.	2.3	131
74	Structural Analysis and Detection of Biological Inositol Pyrophosphates Reveal That the Family of VIP/Diphosphoinositol Pentakisphosphate Kinases Are 1/3-Kinases. Journal of Biological Chemistry, 2009, 284, 1863-1872.	3.4	119
75	Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. Advances in Enzyme Regulation, 2009, 49, 87-96.	2.6	20
76	Metabolic and signaling properties of an <i>Itpk</i> gene family in <i>Glycine max</i> . FEBS Letters, 2008, 582, 1853-1858.	2.8	35
77	An Expanded Biological Repertoire for Ins(3,4,5,6)P4 through its Modulation of ClC-3 Function. Current Biology, 2008, 18, 1600-1605.	3.9	35
78	Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport–Luebering glycolytic shunt. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5998-6003.	7.1	38
79	The Nucleolus Exhibits an Osmotically Regulated Gatekeeping Activity That Controls the Spatial Dynamics and Functions of Nucleolin. Journal of Biological Chemistry, 2008, 283, 11823-11831.	3.4	20
80	Cellular Energetic Status Supervises the Synthesis of Bis-Diphosphoinositol Tetrakisphosphate Independently of AMP-Activated Protein Kinase. Molecular Pharmacology, 2008, 74, 527-536.	2.3	58
81	Integration of Inositol Phosphate Signaling Pathways via Human ITPK1. Journal of Biological Chemistry, 2007, 282, 28117-28125.	3.4	58
82	Purification, Sequencing, and Molecular Identification of a Mammalian PP-InsP5 Kinase That Is Activated When Cells Are Exposed to Hyperosmotic Stress. Journal of Biological Chemistry, 2007, 282, 30763-30775.	3.4	109
83	Intracellular localization of human Ins(1,3,4,5,6) <i>P</i> 5 2-kinase. Biochemical Journal, 2007, 408, 335-345.	3.7	43
84	Understanding the biological significance of diphosphoinositol polyphosphates (â€~inositol) Tj ETQq0 0 0 rgBT /C)verlock 1 2.7	0 Tf ₃ 50 302 T
85	Understanding the biological significance of diphosphoinositol polyphosphates (â€~inositol) Tj ETQq1 1 0.784314	4 rgBT /Ov 2.7	verlock 10 Tf 20
86	Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet's "phosphate crisis― Journal of Biotechnology, 2006, 126, 248-259.	3.8	36
87	On the contribution of stereochemistry to human ITPK1 specificity: Ins(1,4,5,6)P4is not a physiologic substrate. FEBS Letters, 2006, 580, 324-330.	2.8	14
88	Pathogenicity ofSalmonella: SopE-mediated membrane ruffling is independent of inositol phosphate signals. FEBS Letters, 2006, 580, 1709-1715.	2.8	5
89	Physiological levels of PTEN control the size of the cellular Ins(1,3,4,5,6)P5 pool. Cellular Signalling, 2006, 18, 488-498.	3.6	11
90	scyllo â€Inositol Pentakisphosphate as an Analogue of myo â€Inositol 1,3,4,5,6â€Pentakisphosphate: Chemical Synthesis, Physicochemistry and Biological Applications. ChemBioChem, 2006, 7, 1114-1122.	2.6	23

#	Article	IF	CITATIONS
91	Apical localization of ITPK1 enhances its ability to be a modifier gene product in a murine tracheal cell model of cystic fibrosis. Journal of Cell Science, 2006, 119, 1320-1328.	2.0	16
92	ls Intervention in Inositol Phosphate Signaling a Useful Therapeutic Option for Cystic Fibrosis?. , 2005, , 103-114.		0
93	The Ins(1,3,4)P3 5/6-kinase/Ins(3,4,5,6)P4 1-kinase is not a protein kinase. Biochemical Journal, 2005, 389, 389-395.	3.7	23
94	Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cellular Signalling, 2005, 17, 1533-1541.	3.6	48
95	Can intervention in inositol phosphate signalling pathways improve therapy for cystic fibrosis?. Expert Opinion on Therapeutic Targets, 2005, 9, 1307-1317.	3.4	6
96	Telomere maintenance by intracellular signals: New kid on the block?. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1811-1812.	7.1	3
97	Cystic Fibrosis Airway Epithelial Ca2+ Signaling. Journal of Biological Chemistry, 2005, 280, 10202-10209.	3.4	104
98	How versatile are inositol phosphate kinases?. Biochemical Journal, 2004, 377, 265-280.	3.7	166
99	Signaling by Higher Inositol Polyphosphates. Journal of Biological Chemistry, 2004, 279, 43378-43381.	3.4	64
100	Cell signaling by a physiologically reversible inositol phosphate kinase/phosphatase. Advances in Enzyme Regulation, 2004, 44, 265-277.	2.6	6
101	Ectopic expression of murine diphosphoinositol polyphosphate phosphohydrolase 1 attenuates signaling through the ERK1/2 pathway. Cellular Signalling, 2004, 16, 1045-1059.	3.6	16
102	Inositol Phosphate Kinases and Phosphatases. , 2004, , 427-429.		0
103	The importance to chondrocyte differentiation of changes in expression of the multiple inositol polyphosphate phosphatase. Experimental Cell Research, 2003, 290, 254-264.	2.6	9
104	Cytosolic Multiple Inositol Polyphosphate Phosphatase in the Regulation of Cytoplasmic Free Ca2+ Concentration. Journal of Biological Chemistry, 2003, 278, 46210-46218.	3.4	28
105	Paralogous murine Nudt10 and Nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent diphosphoinositol polyphosphate phosphohydrolases. Biochemical Journal, 2003, 373, 81-89.	3.7	33
106	Ins(1,3,4,5,6)P5: A Signal Transduction Hub. , 2003, , 233-235.		2
107	Regulation of calcium-activated chloride channels by inositol 3,4,5,6 tetrakisphosphate. Current Topics in Membranes, 2002, 53, 345-363.	0.9	13
108	Inositol 3,4,5,6-Tetrakisphosphate Inhibits Insulin Granule Acidification and Fusogenic Potential. Journal of Biological Chemistry, 2002, 277, 26717-26720.	3.4	31

#	Article	IF	CITATIONS
109	An Adjacent Pair of Human NUDT Genes on Chromosome X Are Preferentially Expressed in Testis and Encode Two New Isoforms of Diphosphoinositol Polyphosphate Phosphohydrolase. Journal of Biological Chemistry, 2002, 277, 32730-32738.	3.4	38
110	In Saccharomyces cerevisiae, the Inositol Polyphosphate Kinase Activity of Kcs1p Is Required for Resistance to Salt Stress, Cell Wall Integrity, and Vacuolar Morphogenesis. Journal of Biological Chemistry, 2002, 277, 23755-23763.	3.4	110
111	Regulation of Ins(3,4,5,6)P4 Signaling by a Reversible Kinase/Phosphatase. Current Biology, 2002, 12, 477-482.	3.9	60
112	Synthesis and Biological Activity of d- and l-chiro-Inositol 2,3,4,5-Tetrakisphosphate:  Design of a Novel and Potent Inhibitor of Ins(3,4,5,6)P4 1-Kinase/Ins(1,3,4)P3 5/6-Kinase. Journal of Medicinal Chemistry, 2001, 44, 2984-2989.	6.4	17
113	Genetic rationale for microheterogeneity of human diphosphoinositol polyphosphate phosphohydrolase type 2. Gene, 2001, 269, 53-60.	2.2	12
114	The transcriptional regulator, Arg82, is a hybrid kinase with both monophosphoinositol and diphosphoinositol polyphosphate synthase activity. FEBS Letters, 2001, 494, 208-212.	2.8	32
115	Expanding coincident signaling by PTEN through its inositol 1,3,4,5,6-pentakisphosphate 3-phosphatase activity. FEBS Letters, 2001, 499, 6-10.	2.8	39
116	A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Molecular Microbiology, 2001, 39, 248-260.	2.5	348
117	A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Molecular Microbiology, 2001, 40, 1461-1461.	2.5	0
118	Regiospecific phosphohydrolases from Dictyostelium as tools for the chemoenzymatic synthesis of the enantiomers d-myo-inositol 1,2,4-trisphosphate and d-myo-inositol 2,3,6-trisphosphate: non-physiological, potential analogues of biologically active d-myo-inositol 1,3,4-trisphosphate. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2705-2708.	2.2	19
119	Assessing the omnipotence of inositol hexakisphosphate. Cellular Signalling, 2001, 13, 151-158.	3.6	180
120	Regulation of a Human Chloride Channel. Journal of Biological Chemistry, 2001, 276, 18673-18680.	3.4	65
121	α1-Adrenergic Receptors Mediate LH-Releasing Hormone Secretion through Phospholipases C and A2 in Immortalized Hypothalamic Neurons. Endocrinology, 2001, 142, 4839-4851.	2.8	18
122	Â1-Adrenergic Receptors Mediate LH-Releasing Hormone Secretion through Phospholipases C and A2 in Immortalized Hypothalamic Neurons. Endocrinology, 2001, 142, 4839-4851.	2.8	4
123	Phosphatidylinositol and inositol phosphate metabolism. Journal of Cell Science, 2001, 114, 2207-2208.	2.0	39
124	Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P4 1-kinase/Ins(1,3,4)P3 5/6-kinase. Biochemical Journal, 2000, 351, 551.	3.7	21
125	Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P4 1-kinase/Ins(1,3,4)P3 5/6-kinase. Biochemical Journal, 2000, 351, 551-555.	3.7	65
126	Transcriptional regulation: a new dominion for inositol phosphate signaling?. BioEssays, 2000, 22, 786-789.	2.5	26

#	Article	IF	CITATIONS
127	Ins(3,4,5,6)P sub4 inhibits an apical calcium-activated chloride conductance in polarized monolayers of a cystic fibrosis cell-line. Journal of Biological Chemistry, 2000, 275, 26906-13.	3.4	24
128	The Inositol Hexakisphosphate Kinase Family. Journal of Biological Chemistry, 2000, 275, 24686-24692.	3.4	167
129	Discovery of Molecular and Catalytic Diversity among Human Diphosphoinositol-Polyphosphate Phosphohydrolases. Journal of Biological Chemistry, 2000, 275, 12730-12736.	3.4	85
130	Targeted Deletion of Minpp1 Provides New Insight into the Activity of Multiple Inositol Polyphosphate Phosphatase In Vivo. Molecular and Cellular Biology, 2000, 20, 6496-6507.	2.3	63
131	Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export inSaccharomyces cerevisiae. FEBS Letters, 2000, 468, 28-32.	2.8	131
132	Transcriptional regulation: a new dominion for inositol phosphate signaling?. BioEssays, 2000, 22, 786-789.	2.5	1
133	myo-Inositol 3,4,5,6-Tetrakisphosphate Inhibits an Apical Calcium-activated Chloride Conductance in Polarized Monolayers of a Cystic Fibrosis Cell Line. Journal of Biological Chemistry, 2000, 275, 26906-26913.	3.4	44
134	Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochemical Journal, 2000, 352, 343.	3.7	16
135	Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochemical Journal, 2000, 352, 343-351.	3.7	44
136	Targeted Deletion of Minpp1 Provides New Insight into the Activity of Multiple Inositol Polyphosphate Phosphatase In Vivo. Molecular and Cellular Biology, 2000, 20, 6496-6507.	2.3	6
137	Diphosphoinositol Polyphosphates: The Final Frontier for Inositide Research?. Biological Chemistry, 1999, 380, 945-951.	2.5	41
138	Site-directed Mutagenesis of Diphosphoinositol Polyphosphate Phosphohydrolase, a Dual Specificity NUDT Enzyme That Attacks Diadenosine Polyphosphates and Diphosphoinositol Polyphosphates. Journal of Biological Chemistry, 1999, 274, 35434-35440.	3.4	42
139	The Diadenosine Hexaphosphate Hydrolases fromSchizosaccharomyces pombe and Saccharomyces cerevisiae Are Homologues of the Human Diphosphoinositol Polyphosphate Phosphohydrolase. Journal of Biological Chemistry, 1999, 274, 21735-21740.	3.4	125
140	Inositol 1,3,4-Trisphosphate Acts in Vivo as a Specific Regulator of Cellular Signaling by Inositol 3,4,5,6-Tetrakisphosphate. Journal of Biological Chemistry, 1999, 274, 18973-18980.	3.4	49
141	Cloning and functional expression of the cytoplasmic form of rat aminopeptidase P. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1444, 326-336.	2.4	14
142	The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification. FEBS Letters, 1999, 442, 99-104.	2.8	42
143	Essential Role of Phosphoinositide Metabolism in Synaptic Vesicle Recycling. Cell, 1999, 99, 179-188.	28.9	760
144	Synthesis of d-1,2-dideoxy-1,2-difluoro-myo-inositol 3,4,5,6-tetrakisphosphate and its enantiomer as analogues of myo-inositol 3,4,5,6-tetrakisphosphate. Carbohydrate Research, 1998, 309, 337-343.	2.3	8

#	Article	IF	CITATIONS
145	A novel context for the `MutT' module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO Journal, 1998, 17, 6599-6607.	7.8	151
146	Turnover of bis-diphosphoinositol tetrakisphosphate in a smooth muscle cell line is regulated by beta 2-adrenergic receptors through a cAMP-mediated, A-kinase-independent mechanism. EMBO Journal, 1998, 17, 1710-1716.	7.8	54
147	Regulation of Ca2+-dependent Clâ^'conductance in a human colonic epithelial cell line (T84): cross-talk between Ins(3,4,5,6)P4and protein phosphatases. Journal of Physiology, 1998, 510, 661-673.	2.9	54
148	Inhibition by inositoltetrakisphosphates of calcium- and volume-activated Cl - currents in macrovascular endothelial cells. Pflugers Archiv European Journal of Physiology, 1998, 435, 637-644.	2.8	27
149	The versatility of inositol phosphates as cellular signals. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1998, 1436, 49-67.	2.4	162
150	The Structural and Functional Versatility of Inositol Phosphates. ACS Symposium Series, 1998, , 2-23.	0.5	1
151	Regulation of AP-3 Function by Inositides. Journal of Biological Chemistry, 1997, 272, 6393-6398.	3.4	86
152	Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochemical Journal, 1997, 327, 553-560.	3.7	85
153	Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochemical Journal, 1997, 328, 75-81.	3.7	78
154	HIV-1 envelope protein, gp120, has no effects on inositol phosphate production and metabolism in the Jurkat T-cell line either in the presence or absence of receptor stimulation. FEBS Letters, 1997, 413, 75-80.	2.8	1
155	Ins(3,4,5,6)P4 specifically inhibits a receptor-mediated Ca2+-dependent Cl- current in CFPAC-1 cells. American Journal of Physiology - Cell Physiology, 1997, 272, C1160-C1168.	4.6	39
156	D-myo-Inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14456-14460.	7.1	98
157	Properties of the Inositol 3,4,5,6-Tetrakisphosphate 1-Kinase Purified from Rat Liver. Journal of Biological Chemistry, 1997, 272, 2285-2290.	3.4	26
158	Localization of a high-affinity inositol 1,4,5-trisphosphate/inositol 1,4,5,6-tetrakisphosphate binding domain to the pleckstrin homology module of a new 130 kDa protein: characterization of the determinants of structural specificity. Biochemical Journal, 1996, 318, 561-568.	3.7	69
159	Inositol 3,4,5,6-Tetrakisphosphate Inhibits the Calmodulin-dependent Protein Kinase II-activated Chloride Conductance in T84 Colonic Epithelial Cells. Journal of Biological Chemistry, 1996, 271, 14092-14097.	3.4	108
160	Inositol Pentakis- and Hexakisphosphate Metabolism Adds Versatility to the Actions of Inositol Polyphosphates Novel Effects on Ion Channels and Protein Traffic. Sub-Cellular Biochemistry, 1996, 26, 187-226.	2.4	39
161	Comparison of the activities of a multiple inositol polyphosphate phosphatase obtained from several sources: a search for heterogeneity in this enzyme. Biochemical Journal, 1995, 305, 491-498.	3.7	28
162	Effects of aluminium on the hepatic inositol polyphosphate phosphatase. Biochemical Journal, 1995, 305, 557-561.	3.7	16

#	Article	IF	CITATIONS
163	The interaction of coatomer with inositol polyphosphates is conserved in Saccharomyces cerevisiae. Biochemical Journal, 1995, 310, 279-284.	3.7	48
164	A Novel, Phospholipase C-independent Pathway of Inositol 1,4,5-Trisphosphate Formation in Dictyostelium and Rat Liver. Journal of Biological Chemistry, 1995, 270, 29724-29731.	3.4	49
165	The Effects of Mastoparan on the Carrot Cell Plasma Membrane Polyphosphoinositide Phospholipase C. Plant Physiology, 1995, 107, 845-856.	4.8	67
166	Synthesis and Metabolism of Bis-diphosphoinositol Tetrakisphosphate in Vitro and in Vivo. Journal of Biological Chemistry, 1995, 270, 10489-10497.	3.4	62
167	Inhibition of Clathrin Assembly by High Affinity Binding of Specific Inositol Polyphosphates to the Synapse-specific Clathrin Assembly Protein AP-3. Journal of Biological Chemistry, 1995, 270, 1564-1568.	3.4	153
168	Synthesis and Structure of Cellular Mediators: Inositol Polyphosphate Diphosphates. Journal of the American Chemical Society, 1995, 117, 12172-12175.	13.7	29
169	Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature, 1994, 371, 711-714.	27.8	197
170	Protection against Alzheimer's disease with apoE â~2. Lancet, The, 1994, 343, 1432-1433.	13.7	215
171	Measurement of Receptor-Activated Accumulation of Inositol Phosphates as an Index of Phospholipase C Activity. , 1994, , 328-339.		0
172	Inositol phosphates and cell signaling: new views of InsP5 and InsP6. Trends in Biochemical Sciences, 1993, 18, 53-56.	7.5	136
173	Changes in Phosphatidylinositol Metabolism in Response to Hyperosmotic Stress in Daucus carota L. Cells Grown in Suspension Culture. Plant Physiology, 1993, 103, 637-647.	4.8	72
174	Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochemical Journal, 1993, 293, 583-590.	3.7	116
175	REGULATION OF THE METABOLISM OF 1,2-DIACYLGLYCEROLS AND INOSITOL PHOSPHATES THAT RESPOND TO RECEPTOR ACTIVATION. , 1993, , 315-346.		3
176	Relationships between the degree of cross-linking of surface immunoglobulin and the associated inositol 1,4,5-trisphosphate and Ca2+ signals in human B cells. Biochemical Journal, 1992, 284, 447-455.	3.7	26
177	Regulation of the metabolism of 1,2-diacyglycerols and inositol phasphates that respond to receptor activation. , 1991, 49, 79-104.		44
178	Multiple isomers of inositol pentakisphosphate in Epstein-Barr-virus- transformed (T5-1) B-lymphocytes. Identification of inositol 1,3,4,5,6-pentakisphosphate, d-inositol 1,2,4,5,6-pentakisphosphate and l-inositol 1,2,4,5,6-pentakisphosphate. Biochemical Journal, 1991, 280, 323-329.	3.7	27
179	Activation of Ca2+ entry into acinar cells by a non-phosphorylatable inositol trisphosphate. Nature, 1991, 352, 162-165.	27.8	192
180	Rat liver contains a potent endogenous inhibitor of inositol 1,3,4,5-tetrakisphosphate 3-phosphatase. Biochemical Journal, 1990, 267, 831-834.	3.7	14

#	Article	IF	CITATIONS
181	Polarized subcellular distribution of the 1-, 4- and 5-phosphatase activities that metabolize inositol 1,4,5-trisphosphate in intestinal epithelial cells. Biochemical Journal, 1990, 269, 353-358.	3.7	17
182	The perturbation, by aluminium, of receptor-generated calcium transients in hepatocytes is not due to effects of Ins(1,4,5)P3-stimulated Ca2+ release or Ins(1,4,5)P3 metabolism by the 5-phosphatase and 3-kinase. Biochemical Journal, 1990, 270, 837-837.	3.7	10
183	Kinetic consequences of the inhibition by ATP of the metabolism of inositol (1,4,5) trisphosphate and inositol (1,3,4,5) tetrakisphosphate in liver. Different effects upon the 3- and 5-phosphatases. Cellular Signalling, 1990, 2, 191-195.	3.6	17
184	Inositol phosphate metabolism: Further problems and some solutions. Cellular Signalling, 1989, 1, 125-133.	3.6	14
185	Metabolism of the inositol phosphates produced upon receptor activation. Biochemical Journal, 1989, 260, 313-324.	3.7	322
186	Inositol 1:2(cyclic),4,5-trisphosphate is not a major product of inositol phospholipid metabolism in vasopressin-stimulated WRK1 cells. Biochemical Journal, 1988, 252, 1-5.	3.7	50
187	1 <scp>d</scp> - <i>myo</i> -inositol 1,4,5-trisphosphate dephosphorylation by rat enterocytes involves an intracellular 5-phosphatase and non-specific phosphatase activity at the cell surface. Biochemical Journal, 1988, 255, 131-137.	3.7	16
188	Preferential localization of rat liver d-myo-inositol 1,4,5-trisphosphate/1,3,4,5-tetrakisphosphate 5-phosphatase in bile-canalicular plasma membrane and †late' endosomal vesicles. Biochemical Journal, 1988, 256, 363-369.	3.7	39
189	Dephosphorylation of <i>myo</i> -inositol 1,4,5-trisphosphate and <i>myo</i> -inositol 1,3,4-triphosphate. Biochemical Journal, 1987, 242, 393-402.	3.7	119
190	Metabolism of <scp>d</scp> - <i>myo</i> -inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of <i>myo</i> -inositol tetrakisphosphate. Biochemical Journal, 1987, 246, 139-147.	3.7	158
191	The pathway of myo-inositol 1,3,4-trisphosphate dephosphorylation in liver. Biochemical Journal, 1987, 248, 977-980.	3.7	31
192	Inositol trisphosphate and tetrakisphosphate phosphomonoesterases of rat liver. Biochemical Society Transactions, 1987, 15, 28-32.	3.4	16
193	Calcium uptake by intracellular compartments in permeabilised enterocytes effect of inositol 1,4,5 trisphosphate. Biochemical and Biophysical Research Communications, 1986, 139, 612-618.	2.1	15
194	Permeability properties of isolated enterocytes from rat small intestine. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 889, 361-365.	4.1	7
195	Changes in free cytosolic calcium and accumulation of inositol phosphates in isolated hepatocytes by [Leu]enkephalin. Biochemical Journal, 1986, 238, 537-542.	3.7	16
196	Ca2+ uptake by intracellular compartments in isolated enterocytes: effect of inositol 1,4,5-trisphosphate. Biochemical Society Transactions, 1986, 14, 1100-1101.	3.4	0
197	Analytical methods to quantify phosphoinositide turnover and related reactions. Fresenius Zeitschrift Für Analytische Chemie, 1986, 324, 236-236.	0.8	0
198	Ca2+ transport and Ca2+-dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands. Biochemical Journal, 1985, 226, 741-748.	3.7	60

#	Article	IF	CITATIONS
199	The measurement of liver mitochondrial electrochemical potential in situ and the effects of glucagon. Biochemical Society Transactions, 1985, 13, 741-742.	3.4	2
200	Dephosphorylation of myo-inositol 1,4,5-trisphosphate. Biochemical Society Transactions, 1985, 13, 944-944.	3.4	0
201	Reply to the comments. FEBS Journal, 1985, 146, 234-235.	0.2	0
202	Comments on 'Alterations of oxidative-phosphorylation reactions in mitochondria isolated from hypothyroid-rat liver', by I. Ezawa et al FEBS Journal, 1985, 146, 233-234.	0.2	2
203	Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature, 1984, 312, 374-376.	27.8	340
204	Characterization of a rapid cellular-fractionation technique for hepatocytes. Application in the measurement of mitochondrial membrane potential <i>in situ</i> . Biochemical Journal, 1984, 219, 375-382.	3.7	22
205	Determination of mitochondrial calcium content in hepatocytes by a rapid cellular-fractionation technique. α-adrenergic agonists do not mobilize mitochondrial Ca2+. Biochemical Journal, 1984, 219, 383-389.	3.7	29
206	Determination of mitochondrial calcium content in hepatocytes by a rapid cellular fractionation technique. Vasopressin stimulates mitochondrial Ca2+ uptake. Biochemical Journal, 1984, 220, 417-421.	3.7	37
207	The effects of some mitochondrial translocase inhibitors on the activity of rat liver transhydrogenase. Biochemical Pharmacology, 1982, 31, 3645-3649.	4.4	2
208	Respiration and pregnenolone synthesis in bovine adrenal cortex mitochondria. FEBS Letters, 1982, 137, 146-148.	2.8	4
209	Pregnenolone Efflux from Mitochondria of Bovine Adrenal Cortex. FEBS Journal, 1982, 123, 153-157.	0.2	6
210	The effects of thyroxine treatment, in vivo and in vitro, on Ca2+efflux from rat liver mitochondria. FEBS Letters, 1981, 126, 9-12.	2.8	23
211	The mitochondrial protonic electrochemical potential difference as a point of hormone action. II. New proposals for the activity of glucagon. Journal of Theoretical Biology, 1981, 91, 171-189.	1.7	3
212	The Effect of Azastene, Cyanoketone and Trilostane upon Respiration and Cleavage of the Cholesterol Side Chain in Mitochondria from Bovine Adrenal Cortex. FEBS Journal, 1981, 117, 75-80.	0.2	13
213	Ion transport in liver mitochondria from normal and thyroxine-treated rats. Journal of Bioenergetics and Biomembranes, 1980, 12, 379-393.	2.3	15
214	The thyroid gland and the liver mitochondrial protonic electrochemical potential difference: A novel hormone action?. Journal of Theoretical Biology, 1980, 82, 1-13.	1.7	20
215	Near-equilibrium model is insufficient. Trends in Biochemical Sciences, 1979, 4, N135.	7.5	0
216	The influence of thyroxine administered <i>in vivo</i> on the transmembrane protonic electrochemical potential difference in rat liver mitochondria. Biochemical Journal, 1979, 178, 505-507.	3.1	42

#	Article	IF	CITATIONS
217	Itpk1. The AFCS-nature Molecule Pages, 0, , .	0.2	0